Chapter 1 Module

§11 Definition and Fropeties of Module
Asume R tobe o unital commutative ting with unie tn Cor simply 1>. We abo asume on # 14 to avoid
some bad propety of the ring R
Def 11 [et R,1,-) be ring, (M. +) be an Abelian group , ¢f there is a map RxM =M, w.m>m aom
such that :
W) a+y) =ax +ay
@ @+b)x = ax+bx
3 @b)x = acbx)
b 1x=%
then M is called @ feft R module.
Remark.. The right modufe can be defined Jimilaly. When R is o commutative ring,a left R-module is akso o
right R-module. (Def. 1.2)
Example 11 Vector spaces are modules over fields.
Example 12 Any Abelion growp M is @ Z-module with action given by
m-L:= «L?n_ﬂc y 03 %= Oy, =1) %= -X.
Example 13 Let V be a vector puee over field F and T be a linear operator T:V—V. Consider
polynomial ring FIAL |, we fhove FIA1=FLTI, via the action of T on V, we obtein a FIA1
module structure over V,
FIALxV — V,
(Pd) , &) = P&,
Example 14 Ring R is o modue over itself. If Sisa Sabrinﬂ of R, then Ris o $-module, bur S' is
mot necessardly o R-module. When S is o ideal of R (all ideak are M/v‘njs ), Sis an R-module .
Notice R is a gaérfnj cif RLL, -, %nl, +hus RI%.--, %Enl 5 an R-module. Sim[/wﬂ/g. tHhe
ring of formal power series RIL%IT is an R-module.
Ex_amﬂ_eIE let R.S ke ring and V:R—S be a rin/ Aomomor‘fh«'sm, M be a S-module, then
M is an R-module with action o-%:=%a) %.

Claim let M be an R-module, we hove :
a4) ao0=0 1) 0;% = Om



@) 0% =-0%) & cnx= -ak)
@ Ty = Dok 3) (Di0) % = Dini-%)

Pr\ov:f. ) ox =a-ck«0) =ax +t+a0 = 00 =o0.

) @x = @+0) - % = QAKX + 0% = 0% =9
Q X t X = 00 = 0 = a-%x =-a%
@)y x + ox =lt-mtal-x = o= WA= —aK

 and Q) are obyiews.
Meinly we the cancellation property of group.
Ex_aer/e 1.6 Tero module M= {0},
Def. 1.3 Let M be an R-module and N # ¢ a subset of M. N ssaled a submodde of m if
W N is a wbgroup of M;
@ axeN,vaeR, Vael.
Prop 11 The ron-empty subet N'SM is a sbmodule ff
D VY YyeN, Yty.eN
@ Vaer, ¥xeN, @%eN
Proof, “=p " is obvious
‘" Chaose a=o0 in®, ond JeN, based on cloim above, we obtain 0y =0 €N.
Similarly, cheose @ =-1 and Jen, €nY = -y eN. Ths N is a .méjr‘ouf.
Example 1.7 Let M be o Z-modie, N ic o submodde iff N ¥ an adlitive abgreup.
Example 1.8 et V be o vector space over F, W is o wbmoddle iff W is a subspate .
Example 1.9 let V ke o vector spae ower field F, T be o linear map T V=>V. Repard Vas w
FLT1 modde, a submodule of V is aninveriont subgpace of T.
broof. “=>" N is a shmodde of V. shw N is inveriont sdbspoe.
N is subyrowp, sine F S LTI, Nis ched wnder the action of F,thusN is a subspase.
Sinie TEFLTI, N shauld be clord under the oction of T
" N on iweriont Juéf/oace of V, show thet N /s a Submodale.
Nis suﬁjr'ou{) of V. N is invariunt under the action of T, thu it is gleo

jnvorimt under the action of 7" (m=12%), thi implies /V is mpriot

((q=

under the oction o P e FLTl.



Ex_am,ﬂi 110 Regard ring R as R-modde, N is a Submodde Hff N is an idea.
Thi is clear from definition.
Example 1.1t Let {NilieT} be a fomily of submodules then Miex Ni is o submodule.
Example 112 Qero submodule {0} .
Example 143 For ring R ond R modde M\, let xeM, we defice amihilotor of % as
Anng (%) := { @eR | % =ol.
4) Anne ) is an ideaf of R
Proof. Srep 1. Show Atng x) 7S a  subgroup.
Suwo;e b €Amgx), ax% =b-x = 0, thn (-b) % =o. 7hs /nples
a-b & Anv\FLtX) , A () 7S a Su,bsr\oup,
Step 1. Show R Amngtxy € fAmng (X).
FreR and o €Amex), (ro)y-%x = r@%X) = ro =0, = rtehme,
) If AnnR&X) *0, % is caled a tersin elment.
€)) Tf Ris an inte&ml domwin ( commutative ”"}5 such that, ¥ a,beR, ab=0 im,:/;es a=0 enr
b=0) , the e of ol torsion aements TUW) s o submodule, colled torsion submodele.
O M=TWN), M is caled o torsion module. M is caléd torsion free if T =o.
Proof. Step 4. Show TCM) is a Subgryup.
If xe Ti(M), TaeR oo St. 0% =0, this implies thy
WEX) = —@k =0 =D —XETUW). 0eTM) /s obvious.
If x.4€TUW), thre exst nonzero 0. b €R such that ax=by =o0. Ses
r=ab,we hawe "X = r-y=o wherer #q sine a,b £o. (Praperty of /‘mjm! domain)
Stepd. Show FreR , FxeTuw) , a-x & TLM).
Sinte X€TUW), 3 be R ,b*0 &t. bx =0 . Jh /m/ol'er Fhote blax) =
abx)=a0 =0 =F 0% & TUW).
(4) I G is finite A group, when rejarded os Z-modik, we hwe T(G) = G.
Prosf. Sine ol elements in finite group ore of finite order.
(D For vettor sprie V', when rejorded 05 FLKI -modide for some Sfmewr map K:V—>V, we fue
TwW) = V.
Prosf. Supose dimV=d, for veV, f vekek, Tv=0 = UE&TW)



If vé¢ Keek, v, TV, -+, T, T mut be dienr dependent, zhere exict nenzero
(o, &y, - ) such thet Dyioi T'0 =0, meaning P =Tyoti T # 0 ond
pcr) v =0 Thus ve TUW).

Def 14 If nonzero R module M only hue Submodules fof ond M, M is clled S/'/n/o/e module
or irreducible module.

Let M be an R module, SSR be o swbet of R, XSM a subset of M, then we define
S-linear combinations of X Qs

SX =fnlisini, sed, wem
Prop 12 Let $+X =M be a subset @f R moduk M, then RX is submodule 57‘/1/1, called
submodule 3enera+ed 137 X ond denored as CX).
Prop 13 For X €M, RX = X) = Nxepn, N sbmdde NV
Proot. Ste{) 1 RX = Nxen, v sbmdle N | sine XEN, RX SN.

Step2  Nxen,nsbmdle NS RX |, sine RX is a submodde and XSRx.
Pef 15 TIf M=RX, X is alled the set of generators of M. T X is finite , and
RX =M, M S called )cinifelj gererated. I M=0x), M is cafed 0 oplic module .
Def 1.6 Let {NilieI} be a -fum;l\\j of sbmoddles of M, we define

Dier Ni= (Viex M) =14+ -+ i [ 4 € Ny, 4eL ],
Pef 1.7 Let K be o Submodue of M, consider the wset
Mk = Ixtk | te Ml

The oddition is de']'ivwd &  (XtR) + WYtK) = xty + K, the fca./arloraducv
iS defined as @ latk) = ax+K. Tha M/ is o modue called guotient module.



