Chapter 1 Module
1.2 Exercise
21 Let Ml an R modde, prove that the following ctatements are epuivalent :
L M =o.
@ for oy R modde N, thee is unisue modile map from N to m.
& For oy R module N, there is am';we o dule mar from M to N.
Proef. This is to prove zero modde is @ zero object, vie., it initiol and termnad.
“dy H@)"; obyious .
”k?-)=b(4-')": S‘uﬁsose M*0, Toke N=M_ id:M>M ard 0: MM are c/.'ﬂermt modude maps
thy we awiwve of a contradiction.
@ < )" obiows .
‘@ @) gmlr os ‘) D@
22 Prow the e?u.ivdwe of fOUowing statoments:
@ M s simrle module .
@ Any nonzero module map  M—>N 75 maonomorphism.
€)) Ana nnzero  motule mp N —M s ePimorPhism.
Preof. ") 2 @": If f:M—N is not monomorphic, Kerf will be a nmzero submodule ef M, thu
a cntradiction.
W I Suppose M\ is not simple and N is G submsdule (£9,M). Jhen puntiont map
MM hag  ker §= N thuy not monOmorf)bi(, we oarrie ot o contradiction.
‘W=D gimilae to ) D @),
‘G " fuffme M is not r;mlole) NEM, N#o, Ne> M is a modde map , bue
rt's not ePimo:lokic.
2.3 (Schurs lemma) Ij' M, N o simple modules, then ony  nonzena module map from M 4o N is an isomorphism.
¥ M is sim/;/e, thm Endg (M) = Home (M, M) is & divisien ring.
Proaf. This is a resdt ef Exercise 22,
2.4 fr modue map f:m—n:
W If f is mondmorphism, then Amn (M) 2 AmnN).

@ If fis epimorphism, thet Am(M) € AmacN),



Pmof. @ For monomorphum M)—*—> N. If re Amm), rN=o. for QﬂJ memM, fu-m) = rfum =o.

7hus +m G/(er‘f o, Hu nre fAmun).
@ Fo- %Dfmor/)/li.rm /\A—i—»/\/, f reAmom) , Va any nepN, thee is me M §t. fm=n.

rn=rfom =fwm)=0. Jme n is arbitroy, we see re Am(ND.

25 let f: Mo N be an epimorphim and Kk be a mbmodde of M. Show
W Y KAkef =0, then f)c : k>N is monomorphic.
@ I kilkef =M, thn flc: K PNV is epimrphic.

Proof. () Ker(f[) = kA Kerf.
(2 Use isomorphism theorsm  (At8)/8 = A/(AnB) -
Here f:M—>N is epimorphic, N = M/kert, defie gustront map
2:M/kers >N, Jine M=K+ &k,  M/keorf =(Ktkef)/af =k fcakers) = N.

2.6 Prove fthat for R mdde M, we hoe R module isomosphiim Homp (R, M) M .

Pm[. DeFine a map T: HmRM —>M, § =50, & aufies Foft)) = T+ TG ond Yerf)
=r¥&). Thy Tis a modde map.

St ar =m, for oy mem,  Foy = frdy = rfay =rm. fis a modde map ., thus f € HomplRn)

Thi means thae & is Surjetive.
Ker ¥ =0 iS clear.
272 let Abe @ 4 modde . r Z modde Z,,:= Z/m2
(1) Homgz (Zm, A) X ALm1:={aeh | ma=ol.
Q) Ure (1) 4o show thet Homg (I, Un) = Zomym, whee mind = ged comonm.
B o fd) (deck by yousdp).  Sime m fd) =fimD=o.

=1{05,1, -, m_-\} prove

Proof. () Define  module map
InE c Atm1. fn any xe AMl, we define JiDr=u, it's clear that §x is in Homgy (Zm, A)

This impln‘es Alml < In .
o show ker ¥ =0, wnsider f€ ker ', fD=o0, dhis imphes fRy= fenD=w D =0 Thy f=o.

@ We need to shaw e Zulma=o0Y & Zpy, . Let d=gudemm) and n=ni-d. o gee

{61 W‘ > l—n\ y 77T (d"\)'n\}
is anihiluted via the astion of m. (Sine m=my-d, m-kn, = mhk-n.)

7he above module s iSomorphic 10 Z gm.wy.

CNoﬁ(e'- m=md n.—_n.d, omd M, , N, COPV"lMQ, Fr ma=75, we hae n/ma .



Thus nd[mda, th imphes  nylmion,  Sine Ny mi,we huwe n,/4 D

2.§ Determinr Homy (Z, Z,), Homz (Zn2), Homz (8, 2Z), Homy (Z,B) ond Homy (& &).

d—J Hom ZCZ, Zn )

{12

Zy (,bd Exercite 2.6)
@ Hom » CZy, 2) = {0}, Cbg Exercise 2.7)
®) Hom 5 (&, 2) {0},

for fE€ Homy, (B, Z), fis an Abelian group AovaOrPhism. Gonsiber InfCZ, Suppose that

n is the smllest positien integer in Inf.  Thre 7 fE€R st fid) =n.

This i/70/if4 that ﬁ,_%)-t-ﬁ;_%):fc%):n, let flE)=m we hae 2am=n .

)
m muws be smulle~ than n. Thx is o contrmdiction.

4) Homz (Z,6) ¥ @Q (l:)cwj exercCise 2.6)
(5 HOW\Z{,&,&) Q@‘

p—

By w R=Hmz(Z, 8, we only need o show Homa(8, 8) = Hom2(Z,@).

Pefine L: Honz (8,8) — Homz (Z,8) by restriction of $:898 +o0 F,: 2+ &.

“Ker W =0" : F S = §1 =0, FW=o0. 7hs inp ey that tftd)=fsr=6 f1d=0 .
Thus f =0,

“In¥ = Hmg (Z, ®). for o Je Homg (Z, R), define 5’(%):1 st t-2=36). We need to

fow e Pz @, 8. Jii+d) = GO 2w dubron = b8+ tga) =gy
=03+ 3.
29 let M, N be Z modile, Am M) =mZ, AmN)=nZ, Am(HomaM,N)) =dZ. Poe thor

d divides gedim,n), (Recd| that Z is PID, wery idead ic genero.ted é,‘l a sinphe element ).

Proof. We reed fo rhow g(dcm,n) € Am CHom 3 CM N)).  Jine thee exict a, b €Z Suh +hat

chcm.n) =am+bn. for any )CG Homz (M, N), we fave amtbn) f cxy = oam fexy + bn fexy
=feama) + bn o). ane Awim) imphe) amxzo.  br €AmN) implrej thae bnfixi=o. Thu

(am4bn) f ) =0 for all x. Sie f i a,rBf'['mry , wWe see gcd an,ny € AnnCHomz Cm,n)),
2.20 Let R be an in-l-cjnf domatin .
@ For R module moap f:M—N, prow that fLTM) S TN) with M) ond TIN) being orsiv
submodwles. Thn meawny the reptriction Fo: T —> TWY) is medie mop.
Q) I[- o—ek—*—nl\ g — N exatt, then © — TLK) -—>TCM) Jr TW) exat .

3 Gie a cmmnhexumrlz. that TIW) & TWN) — 0 is not exalt eren whan M—%/V—Qo exath



Poof. If x € TMm) , Amx) #0. T re R Sk rx =o. Thes  r- foxr = ferm =o, implies

fow e TN
@ S-rel: 1. ke f71 = K F AT =0 sine Kef =o.

S«ra- Show Infr = KeryT = /<er<9(l TwMM) = Imf N TUN)

For any meImfnTm) . T o#¥#r ER st. rm=o. ond I Ae [k st.

Fky =M. Then r fik) = fir-k) =0 . Sme keof=o. rhk=o = ReTH.

This means Im$ N TM) < In f1. The other direction is ebvious,
@ Fr Z -5 2/z-—>0. Ttzr)=o, T(Z = Z¢

T = T(Zk2) >0 5 nit exact .

2.12. @ I.f o—aA———)B-S—-ac—ao

O——?C3—7'D—9E.—%O ore exott then

o—>A—/8 —gié'D—%Eéo is exalt .

@ Ew/a exaut sesuene @A be coml;o;ul ftom fhore exau sesuenses from (1)

P N N
o—aA—(P—?B—%C—%D%E——)o

O Imf=C thy In3f = ke V

@ kerJ =0 thus ker 9F = F 0 3'0) = §7w) =Kerf = In P,



