

Chapter 1 Module

§1.2 Module homomorphism

- Definition and property of module homomorphism.
- Hom set $\text{Hom}(M, M')$
- Isomorphism theorem of modules.
- Exact sequence.
- Short five lemma, five lemma, snake lemma.

I. Module homomorphism

Def 2.1 A map $f: M \rightarrow M'$ between two R modules are called module homomorphism if

1. $f(x+y) = f(x) + f(y)$, $\forall x, y \in M$.
2. $f(a \cdot x) = a \cdot f(x)$, $\forall a \in R$, $\forall x \in M$.

Or equivalently, $f(a\alpha + b\beta) = a f(\alpha) + b f(\beta)$, $\forall a, b \in R$, $\forall \alpha, \beta \in M$.

Def 2.2 Module homomorphism $f: M \rightarrow M'$ is called:

1. Monomorphism if f is injective.
2. Epimorphism if f is surjective.
3. Isomorphism if f is bijective. In this case, M and M' are called isomorphic $M \cong M'$.

E.g. For submodule $K \subseteq M$, $\nu: M \rightarrow M/K$, $x \mapsto \bar{x} = x+K$ is epimorphism, it's called canonical homomorphism.

Def 2.3 For R module homomorphis $f: M \rightarrow M'$:

1. $\text{Ker } f := \{x \in M \mid f(x) = 0\} = f^{-1}(0)$.
2. $\text{Im } f := \{f(x) \in M' \mid x \in M\}$.
3. $\text{Coker } f := M'/\text{Im } f$.
4. $\text{Coim } f := M/\text{Ker } f$.

You need to check that $\text{Ker } f$ and $\text{Im } f$ are submodules.

Prop 2.1 For module homomorphism $f: M \rightarrow M'$, we have the following equivalent statements:

1. f is monomorphism
2. $\text{Ker } f = 0$

3. For any R module K and module homomorphisms $g, h: K \rightarrow M$, $fg = fh \Rightarrow g = h$. Namely f can be cancelled from the left.

4. For any R module K and module homomorphism $g: K \rightarrow M$, $fg = 0 \Rightarrow g = 0$.

Prop 2.2 Let $f: M \rightarrow M'$ be a R module homomorphism, then the following statements are equivalent:

1. f is epimorphism.

2. $\text{Im } f = M'$.

3. For any R module K and module homomorphism $g, h: M' \rightarrow K$, $gf = hf \Rightarrow g = h$.

4. For any R module K and module homomorphism $g: M' \rightarrow K$, $gf = 0 \Rightarrow g = 0$.

Prop 2.3 Let M, M' be R modules, $f: M \rightarrow M'$ be a module homomorphism, then f is isomorphic iff there are $g, h: M' \rightarrow M$ such that $fg = 1_{M'}$ and $hf = 1_M$. In this case, $g = h$ and it's R module homomorphism.

II. $\text{Hom}(M, M')$ as a module.

Def. Let M, M' be modules, $\text{Hom}(M, M')$ is defined as set of all module homomorphisms between M and M' . The addition $f + g$ is defined as $(f + g)(x) := f(x) + g(x)$ for all $x \in M$. The scalar product is defined as $(af)(x) := a f(x)$, $\forall a \in R$, $\forall x \in M$. This makes $\text{Hom}(M, M')$ a R module.

When $M = M'$, we also set $\text{End}(M) := \text{Hom}(M, M)$. $\text{End}(M)$ is also a ring with multiplication defined by composition of maps. Notice that composition bilinear: $(af + bg) \cdot h = a fh + b gh$, $h(af + bg) = a fh + b hg$.

III. Isomorphism theorem

Thm 2.4 Let $f: M \rightarrow M'$ and $g: M \rightarrow N$ be module homomorphisms, and $g: M \rightarrow N$ is epimorphism such that $\text{Ker } g \subseteq \text{Ker } f$. Then there is unique $h: M' \rightarrow N$ such that $f = hg$.

$$\begin{array}{ccc} M & \xrightarrow{f} & M' \\ & \searrow g & \uparrow \exists! h \\ & & N \end{array}$$

Moreover, $\text{Ker } h = g(\text{Ker } f)$, $\text{Im } h = \text{Im } f$. Thus h is monomorphism iff $\text{Ker } g = \text{Ker } f$; h is epimorphism iff f is epimorphism.

Proof. For $n \in N$, since $g: M \rightarrow N$ is epimorphism, there is $m \in M$ s.t. $g(m) = n$. We set $h(m) = f(m)$, it's clear that $f = hg$. But we need to show h is well-defined. Suppose that $m \neq m'$ s.t. $g(m) = g(m') = n$. $g(m-m') = 0 \Rightarrow m-m' \in \text{Ker } g \subseteq \text{Ker } f$. This implies $f(m) = f(m')$. Thus $h(m) = h(m')$, h is well-defined.

To show h is module homomorphism, for $n_1, n_2 \in N$, $\exists m_1, m_2 \in M$ s.t. $g(m_1) = n_1$, $g(m_2) = n_2$. $h(am_1 + bm_2) = f(am_1 + bm_2) = af(m_1) + bf(m_2) = a h(n_1) + b h(n_2)$.

Thm 2.5 1. Let f be a R module homomorphism, then $M/\text{Ker } f \cong \text{Im } f$.

2. Let $K \subseteq N$ both be submodules of M , then $M/N \cong (M/K)/(N/K)$.
3. Let K, N be submodules of M , then $(N+K)/K \cong N/(N \cap K)$.

Proof. 1. Set $N = M/\text{Ker } f$, $g: M \rightarrow N$ as canonical quotient map. and $\tilde{f}: N \rightarrow \text{Im } f$.

Thm 2.4 directly implies that there is a isomorphism $h: N \rightarrow \text{Im } f$.

2. Define $f: M/K \rightarrow M/N$, $x+K \mapsto x+N$. Since $K \subseteq N$, $x+K = x'+K$ implies $x-x' \in K \subseteq N$. Thus $x+N = x'+N$, f is well-defined. It's also clear that f is module homomorphism. $\text{Ker } f = N/K$, $\text{Im } f = M/N$. Thus 1 implies $\text{Im } f = (M/K)/(N/K)$.
3. Define $f: N \rightarrow (N+K)/K$, $x \mapsto x+K$, use 1.

Coro 2.6 Let $f: M \rightarrow M'$ be epimorphism, then

$$N \mapsto f(N) = \{f(x) \mid x \in N\}$$

$$N' \mapsto f^{-1}(N) = \{x \in M \mid f(x) \in N'\}$$

establish a one-to-one correspondence between submodules of M that contain $\text{Ker } f$ and submodules of M' .

Prop 2.7 R module M is a cyclic module iff M is isomorphic to a quotient of R module R . If x is a generator of M , then $M \cong R/\text{Ann}_R(x)$. M is simple iff $\text{Ann}_R(x)$ is a maximal ideal.

Proof. First statement.

" \Rightarrow " Suppose M is cyclic, viz., $M = (x)$. Then we define R -module map

$$\varphi: r \mapsto rx$$

It's clear that φ is epimorphism. $\text{Ker } \varphi = \{r \in R \mid rx = 0\} = \text{Ann}_R(x)$. From thm 2.5 $M = \text{Im } \varphi = R/\text{Ker } \varphi = R/\text{Ann}_R(x)$.

" \Leftarrow " Let $I \trianglelefteq R$ be an ideal, then $R/I = \{\bar{r} = r+I \mid r \in R\}$ is a quotient module.

Notice that $R/I = (\bar{1})$, i.e., R/I is cyclic.

Second statement.

" \Rightarrow " M is simple, suppose $\text{Ann}_R(x)$ is not maximal ideal, there will be an ideal $\text{Ann}_R \subsetneq I \neq M$.

This means R/I is a submodule of $R/\text{Ann}_R(x)$. This is a contradiction. (Corollary 2.6)

" \Leftarrow " Similarly, based on Corollary 2.6.

IV. Exact sequences.

Def 2.4. Consider R module homomorphism

$$M' \xrightarrow{f} M \xrightarrow{g} M''.$$

If $\text{Im } f = \text{Ker } g$, we call f and g are exact at M . For a finite or infinite

$$\dots \xrightarrow{f_{n-1}} M_{n-1} \xrightarrow{f_n} M_n \xrightarrow{f_{n+1}} M_{n+1} \rightarrow \dots$$

if for every M_n , $\text{Im } f_n = \text{Ker } f_{n+1}$, we call it an exact sequence.

Prop 2.8 1. $0 \rightarrow M \xrightarrow{f} N$ is exact iff f is monomorphism.

2. $M \xrightarrow{f} N \rightarrow 0$ is exact iff f is epimorphism

3. $0 \rightarrow M \xrightarrow{f} N \rightarrow 0$ is exact iff f is isomorphism.

By definition of $\text{ker } f$ and $\text{Coker } f$, the following sequence is exact:

$$0 \rightarrow \text{ker } f \xrightarrow{i} M \xrightarrow{f} N \xrightarrow{\text{Coker } f} \text{Coker } f \rightarrow 0.$$

Similary, f is monomorphic iff the following sequence is exact:

$$0 \rightarrow M \xrightarrow{f} N \xrightarrow{\text{Coker } f} \text{Coker } f \rightarrow 0.$$

f is epimorphic iff the following sequence is exact:

$$0 \rightarrow \text{ker } f \xrightarrow{i} M \xrightarrow{f} N \rightarrow 0.$$

The following exact sequence is called a short exact sequence:

$$0 \rightarrow K \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0.$$

We can treat K as a submodule of M and N a quotient module of M . This short exact sequence is also called an extension of N via K .

Lemma 2.9 (Short five lemma) Consider the following commutative diagram of R module homomorphisms

$$\begin{array}{ccccccc} 0 & \longrightarrow & K & \xrightarrow{f} & M & \xrightarrow{g} & N \longrightarrow 0 \\ & & \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma \\ 0 & \longrightarrow & K' & \xrightarrow{f'} & M' & \xrightarrow{g'} & N' \longrightarrow 0 \end{array}$$

Two horizontal sequences are assumed to be exact, then

1. If α, γ are monomorphisms, then β is also monomorphism.
2. If α, γ are epimorphisms, then β is also epimorphism.
3. If α, γ are isomorphisms, then β is also isomorphism.

Proof. Diagram chasing!!

1. We need to show that $\text{Ker } \beta = \text{f} \circ \gamma$. Suppose $m \in M$ s.t. $\beta(m) = 0$, we need to show $m = 0$.

$$\gamma g(m) = g' \beta(m) = g'(0) = 0.$$

Since γ is monomorphic, $g(m) = 0$. Thus $m \in \text{Ker } g = \text{Im } f$, $\exists k \in K$ s.t. $f(k) = m$.
 $f' \alpha(k) = \beta f(k) = \beta(m) = 0$.

Since f' is monomorphic, $\alpha(k) = 0$. α is also monomorphic, thus $m = 0$.

2. For $m' \in M'$, we need to show that there is $x \in M$ s.t. $\beta(x) = m'$.

Let $m' \in M'$, $g(m') \in N$. Since γ is epimorphic, there is $n \in N$ s.t. $g(m') = \gamma(n)$. Since g is epimorphic, there is $m \in M$ s.t. $g(m) = n$. Then we have

$$g(m') = \gamma(n) = \gamma g(m) = g' \beta(m).$$

Thus $\beta(m) - m \in \text{Ker } g' = \text{Im } f'$. $\exists k' \in K$ s.t. $f(k') = \beta(m) - m'$. Since α is epimorphic, $\exists k \in K$ s.t. $\alpha(k) = k'$. Take $m - f(k) \in M$, we have

$$\beta(m - f(k)) = \beta(m) - \beta f(k).$$

Notice that $\beta f(k) = f' \alpha(k) = f'(k') = \beta(m) - m'$, thus

$$\beta(m - f(k)) = \beta(m) - \beta f(k) = m'.$$

This means β is epimorphic.

3. This is a result of 1 and 2.

Lemma 2.10 (five lemma) Consider the following commutative diagram with exact row

$$\begin{array}{ccccccc} A & \xrightarrow{f_1} & B & \xrightarrow{f_2} & C & \xrightarrow{f_3} & D & \xrightarrow{f_4} & E \\ \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \downarrow \delta & & \downarrow \varepsilon \\ A' & \xrightarrow{g_1} & B' & \xrightarrow{g_2} & C' & \xrightarrow{g_3} & D' & \xrightarrow{g_4} & E' \end{array}$$

1. If α is epimorphism and β, γ are monomorphisms, then γ is monomorphic.
2. If ε is monomorphism, and β, δ are epimorphisms, then γ is epimorphic
3. If $\alpha, \beta, \delta, \varepsilon$ are isomorphisms, then γ is isomorphism. (If β, γ are isomorphisms, α is epimorphism and ε is monomorphism, then γ is isomorphism.)

Proof. This can be derived from snake lemma. It can also be proved by diagram chasing.

Lemma 2.11 (Snake lemma) Consider the following commutative diagram (block one)

$$\begin{array}{ccccccc}
 \text{Ker } \alpha & \longrightarrow & \text{Ker } \beta & \longrightarrow & \text{Ker } \gamma & \longrightarrow & \\
 \downarrow & & \downarrow & & \downarrow & & \\
 A & \xrightarrow{f} & B & \xrightarrow{g} & C & \longrightarrow 0 & \\
 \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \\
 0 \longrightarrow A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C' & \longrightarrow & \\
 & & \downarrow & & \downarrow & & \\
 & & \text{Coker } \alpha & \longrightarrow & \text{Coker } \beta & \longrightarrow & \text{Coker } \gamma
 \end{array}$$

δ

where two rows are exact, then there exist R module connecting homomorphism

$$\delta: \text{Ker } \gamma \rightarrow \text{Coker } \alpha$$

such that the following sequence is exact:

$$\text{Ker } \alpha \rightarrow \text{Ker } \beta \rightarrow \text{Ker } \gamma \xrightarrow{\delta} \text{Coker } \alpha \rightarrow \text{Coker } \beta \rightarrow \text{Coker } \gamma.$$

If f is monomorphism, then so is $\text{Ker } \alpha \rightarrow \text{Ker } \beta$; and if g is epimorphism, then so is $\text{Coker } \beta \rightarrow \text{Coker } \gamma$.