Chapter 1 Module
§1.2 Module homomorphism
o Definition and property of module éomomar/>/lism.
¢ Hom set Hom(Mm,M)
e Isomorphism theorem ef modles.
* Exact sepuence.
o Short five [emmo., five emma, snoke (emmo.
L. Module homomorphism
Def 2L A map f:M—>M’ between two R moduks are cafld modue homomarphism if
I fasp =fo+id), FayeMm.
2. fca-*x)_—-a-f('x), Y oeR, ¥ xeM.
Or eyina/errtQ, Feo +by) = afo + bfW), Ya.ber, Y.y e M.
Def 22 Module homomorphism f:M—> M’ is called :
1. Monomorphism if f is injective.
2. Epimorphism <f f is surjective.
3. Lsomorphism i f is bijective. In this case, M ond M are colled ssomorphic M= M.
E.y. For sbmodue KSM , J: M—>ME , x> X = xtK 45 epimorphism, i’ colled
canonical homomorphism.
Def 23 For R moduk Aomomorphis f:m->m’:
1. Ker§:={xem| jw=0} =§"w0).
2. Imf:= {foweM]| xeM].
3. Coker®:= M/Imt.
4. Coimf :=M/Kerf.
You need to check thar Ker f and Imf are Submodules.
EL‘_Q_E 21 For module /wmomorphn‘gm j‘-; M=>M', we howe the fo//owmj e;w'vuknt
statements:

L. £ i monomorphum
2 Kert =o



3. For oy R modde K 08d modik homomorphisms 3. h:K—M, $9=fh = 9= h. Memek
f an be aneled from the left.
4. For any R module K and module homomorphism J:Kk—>M , f§=0 = J=o.

Prop 22 Let f:M—>M be a R moduk hommorphism, then the fo//owi;y statements ar epuivalent :
1. fis epimenphism .
2. Inf =m’.
3. For any R modle K and mode homomerphism I h: M=k, Jf =bf = §=4.
4. For ony R modale Kk and  modile homomorphism  §: M—>K, gf=o = g=o.

Prop 23 Let M, M' ko R madubkes, f:m—>m be a mokle homomorphism, then f i ismorphic ff
there are J.h:M—>M swh tht f3 =Im ond Af =2, In ths cue, J=h and its R modic

/wmomorloﬁim .

L. Hom(M.M) oS a modue.
Def. Let M, M be modules, HomcM, W) s defined 0 set of ofl modde homomerphisms between N ond

M. The eddition f+J is defied a8 Grd)cxr:=foatym for all xeM. he Stalor product
iSdezfined os wa)('m:= o Vask, VaeM. This mahes Fhmim,m) a R modue.
When M= M, we also set End MM):=Hom(M,M), End (M) is also a ring with mu,ltif:/;‘catfon def«‘ned

by composiion of maps. fhtice that composition bilnear: @f +b9)-4 = a fh+bJh, hlaf#hy) =akf +bhy

L. Isomorphism theorem
7_71_)71 2.4 Let fFM->M ond §:M—N be module Aomomorpﬁlsms) ad J:M—>N s %oim.orf/lism such that Kerd ckerf

m"l tAM’. VAS unisue h: W= M such thet f=ﬁ9.

m—I

R Aalh
N

Moreover, FKerh= gCkerf) , Inh = Inf. Thu h s manomor/:hfsm Hf Kerd = Kerf ; A s
e/oimorfhsm i s arimor[;hism.



Proo-f. For ne /N, gne §: M>N s efimmrlu'sm, there ¢s me W\ St Jon =1
We st hW\) = funy, it's cleor tAwt: f=/Lg. But we need to show A & well-
clefined. furaro;e that mEm St Jemy =Jem'r=n_  gemm) =0 > m-m' € keor IS ker f
Thrs im/a/fes fom) =fany - Thuy hemy =hon’y, ks we//——cle.fmed.
To show A IS modue /zomomprp/xi!m, for 2.0 €N, I m,m €M St Jum) =nr,, Jm =n, .
heomit bmay = foam +bmey = afmy +bfmsy = & ficnn + b hom.
7im25 1 Let £ b o R moduke homomorphism , then M [Kerf = Inf.
2. let KS/V both be submodules of M, then MV EMfi) [IN]K).
3 let kN be submoddes of M, then (V+K)/K = N/iNNK),
Pref. 4. Set N=Mlkef, d: M>N o5 anonicd guotient map. ond F: M ->Inf .
7hm 2.4 erdg imr’r‘er that there Is a iSomorfﬁi!m h: v— Inf.
2. Defime f: M/E > MN , X+k = x+V, Sme KEN, xtk = 2+K
implief  x-%"€ k= N. Thg XtN=tN, fis wel-defined. Lty eho clar thue F 7s
modude howsmorphism.  Ker § =N[k |, Inf = M/yv. The L imphes Inf =Wk)/in/e>.
3. Defire f: N—=>W+K)[K, x> X+Kk, ue 1.
loro 2.6 Let f:m—>M" be epimorphism , then
N = §IN) = {foa| xen]
N'— Fw) = fxem | foo e N)
establish o gne-to-one caprecpondence beween  submodules of M that wntain Ker f and mbmoduies of M
Prop 2.2 R modue M is a gclic module iff M i isomorphic to a pevtient of R modde R. If %
S 0 generton o M, then M =R [Amexd. M is S‘imln/e qf Amg ) s a maximed jdead.
Pro¢f. Finst stuterment .
=7 Suppose M s gehe, viz., M=0x). Jhm we define R—module map
bir e ra
It char that © is opimorphism. for @ = {reR|tx=ol= Ame(X). Fom shm2.5
M=In¢ = R/kert = R/Amg(x).

‘" [et IT<9R be on ideal, then Rz =[7=r+Lirert ¢ a quotient module.
Notice that R/T = (1), ie., RIT /¢ c¢yclic.



Second statement .

=" Mis simpk. ,  suppose  Amg %) is not maximed ideal, there will be on ided Anmp EL1FM.
This meons R/I is a submodule of R/Amg ). This is a contradiction. ( Corollary 2.6 )
" Sim;/ur/g , boued on Coro//arz 2.6.

IV Exoct sequences .
Def 2.4&. (onsider R module /Lomomop/lism

m > m o e
If Im{ = Ker‘g‘ we cll f and § are exax ot M. for a fiute or ifinite
o Im, Maoy =325 ELR May —> -~
ift for overy Mo, Infu=Ker futy, we all & on exa epuence.
Pop 28 1 o—=>m I is exow iff s moaomorpéism.
2. MEN >0 is exaw #ff f is epimorphism
3. 0=>MSH N0 4¢ et H § is isomorphisn.
817 definition af ker £ and Co/cor-f, the fo//ow;nﬂ ceguenie 1§ exclt :
0 —> ket <> M I5 NS Cokert —> 0 -
fim:‘/a,rﬂ, fis momomorphic iff the following sepuone s exart :
o—>/v11>/V—y->(o/<er~f—>o.
£ is e/cimor/pﬁ.‘c :ﬁ‘ the fo//owinﬁ @yusne 45 exat :
o__>/<erff—£—> MmN — o
The following exat sepuenie is alled o Short exort seguene :
o0— ka’; M—ds N—s> 0.
We cn trod K as o swbmodale &f-/l/l and N a quotiont rmodule eof M. Zhis shre exatt Sueue
is alo coled on extenson of N vin K.

Lemma 29 (Short five femma) Consider the following commurative diagram of R sodule homormorphism
0O — K J——) M —-i——> N — 0

oo

, ' )
0 — K—t—>/vv—i—>/v’—-—>o

Jwo ﬂoriznnta/ seguenes are assumed to be exnct, -t-/len



1.
2.
3.

Proof.

I‘J" L, ¢ are nmomoqohism; tAen ('3 s ajfa monvmorpllism.
¥ K, ¢ are epimorphivm,téen‘s is aleo %o;morplfism.
I)C w,{ are iSMor}D/liSMS,-b‘eﬂ 4 £ 0./:0 isomorp/lism.

Dia gram cﬁa.ci/y 1

1. We need to fhow thot :@r@={v?. fuﬂvou memM st @Ufl)=0, we need t0 shw m=o.

{Jm)y=9'gemy = g7wo) =0
Sine ¥ s monomorphic, Jom =o. Thus m € kerd =Inf, T kek ct. fbo =m.
fatk) =gk =fem =0,

Jime f' is momomorphic, Xtky=o0. X is alw monomorphic, thu m=o.

2. Fr meM’, we need fo show that Here o5 xeM St. Bex)=m’.

Let m €M, Jum)&NV. Sine ¢ is eloimor/ohic, there s neN St §em’ = V). Since
J is epimarphic, twe i meM St. Jom=n. T we hue

Jem) = feny = ¢ gumy = g'gem).
Thus fom —m &€ Ker §°=1Imf’, Ik'eK’ £t k) =pm-m’ Sime & is epimorphic ,
Jhek St. Ak =R. Take m—fth) €M, we A

fum—ftky) = Bum) — B fih).
Notie that Bfk) = f'X k) = Sy = pom) —m7, thus

BLm—f)) = pumy ~pfl)y =m.

This mean( @ i efimor,)h.'c.

3. This is a result of 1 ond 7.

Lemma 2.10 Cfive lemma) Gmsider Zhe ﬁl/ow}njv commutative du'agra.m with exaut row

A }lA’B §;>C :;3 D) §G>E

N

R B2 C—3 P35 ~F

v

L. If o is epimrphim and @, are monomorphim, then ¢ is monomorphic .

2. If € 1is monomorphim, and B,§ are efimorfh:sm,d;m & is e/»'morpﬁic

3. B o, b, d, & are iomophisms, then [ is isomorphism. (If B, ) are i;omorP/;irm, X iS epimorphisn

ad € is monomorphism , then ¢ is isomorphism )



Proof. Jhis can be derived from snake [emma. It can afo  be proved 1% d’agmm c/m;inaq.
Lemma 2.11 CSnahe lemma?) Consider #he fo//owr'n‘j commutetive Jiajm.m (black one)

|<er~ A — Ker } ——Ker

} ! |

A 3 .8 d ¢ — o )
| |6 |/
v , v ;o

O ,A’ ‘f QB’ g ﬂcl

———> Cobercd 3 (okerp——— 5 Cokerd’

where two rows are exatt, then there exigt R module connecting homomor/;ﬁim
§: Kerd —> Coker ¥
such thot the following  sejuone 15 exout:
Kord —> Ko 8 —> ker¥ 5> Gokaro —> (oker = Coker /.
T 1 is monomorphism, then 0 is Kem ok — Kerf; and if g is epimarphism , then s0
1S Coker p —> Cokev ¥



