

Chapter 1 Module

§1.6 Injective Modules

- Duality
- $\text{Hom}(\bullet, M)$ and injective modules

(I) Duality

Duality: reversing the direction of arrows.

1. monomorphism f

$$K \xrightarrow[g]{h} M \xrightarrow{f} N$$

2. product

$$\prod_{i \in I} M_i \xrightarrow{\pi_i} M_i$$

$\exists! \tilde{f}$

$N \xrightarrow{f_i} M_i$

1' epimorphism f

$$K \xleftarrow[g]{h} M \xleftarrow{f} N$$

2' coproduct

$$\bigoplus_{i \in I} M_i \xleftarrow{l_i} M_i$$

$\exists! \tilde{f}$

$N \xrightarrow{f_i} M_i$

(II) Injective module

For R module I , $\text{Hom}(\bullet, I)$ is a contravariant functor:

$$\begin{aligned} M &\longmapsto \text{Hom}(M, I) \\ (M \xrightarrow{f} N) &\longmapsto \text{Hom}(f, I) = f^* \quad (\text{or denoted as } \tilde{f}) \\ M &\xrightarrow{f} N \\ &\searrow f^*(h) \quad \downarrow h \\ &\quad I \end{aligned}$$

$$f^*(h) = h \circ f$$

$$(f \circ g)^* = g^* \circ f^*, \quad (f \circ g)^*(h) = h \circ (f \circ g) = (h \circ f) \circ g = g^* \circ f^*(h).$$

Def 6.1 Let I be an R module, if for any monomorphism $f: A \rightarrow B$, and module map $h: A \rightarrow I$, there is module map $\bar{h}: B \rightarrow I$ such that $h = \bar{h}f$, then I is called an injective module.

$$\begin{array}{ccccc}
 0 & \longrightarrow & A & \xleftarrow{f} & B \\
 & & \downarrow h & \searrow \exists \bar{h} & \\
 & & I & &
 \end{array}$$

Thm 6.1 The following statements are equivalent:

- (1) I is injective module.
- (2) If $f \in \text{Hom}(A, B)$ is monic, then $\text{Hom}(f, I) = \tilde{f} = f^*$ is epic.
- (3) If $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is short exact sequence, then the following sequence is exact

$$0 \rightarrow \text{Hom}(C, I) \xrightarrow{g^*} \text{Hom}(B, I) \xrightarrow{f^*} \text{Hom}(A, I) \rightarrow 0.$$

- (4) Exact sequence $0 \rightarrow I \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is split.

Proof. (1) \Leftrightarrow (2): Obvious.

(2) \Rightarrow (3): Prop 5.2 guarantees the exactness of

$$0 \rightarrow \text{Hom}(C, I) \xrightarrow{g^*} \text{Hom}(B, I) \xrightarrow{f^*} \text{Hom}(A, I).$$

The only left part is to show f^* is epic, this is guaranteed by assumption (2).

(3) \Rightarrow (4): Since $0 \rightarrow I \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ exact, by assumption,

$$0 \rightarrow \text{Hom}(C, I) \xrightarrow{g^*} \text{Hom}(B, I) \xrightarrow{f^*} \text{Hom}(I, I) \rightarrow 0 \text{ exact.}$$

Since f^* is epic, there is h s.t. $f^*h = \text{id}_I$. Thus $hf = \text{id}_I$. f is split monic.

From splitting lemma, the sequence is split exact.

(4) \Rightarrow (1). To prove this, we need some subsequent result: ① any R module is a submodule of an injective module; ② $M \oplus N$ is injective iff M and N are injective. From ①, there is an injective E such that $I \hookrightarrow E$, we have the following exact sequence

$$0 \rightarrow I \xrightarrow{i} E \xrightarrow{q} E/I \rightarrow 0.$$

By assumption, it is split exact, thus $E \cong I \oplus E/I$. Now using ②, we see I is injective.

Prop 6.2' For a finite family of R modules $\{M_j\}_{j \in J}$, $|J| < +\infty$, $\bigoplus_{j \in J} M_j$ is injective iff M_j are injective for all $j \in J$. Note that for infinite J , this does not hold.

Proof. $R\text{-Mod}$ is additive category, then finite direct sum is isomorphic to finite direct product, we will prove a more general version in the next prop.

Prop 6.2. For index set J (not necessarily finite), direct product $\prod_{j \in J} M_j$ is injective iff M_j is injective for all $j \in J$.

Proof. " \Leftarrow " Suppose M_j 's are injective, we need to show $\prod_{j \in J} M_j$ is injective. Let $\pi_j : \prod_{j \in J} M_j \rightarrow M_j$ be canonical projections.

Consider monomorphism $f: A \hookrightarrow B$, $\text{Hom}(f, M_j)$ is epic for all $j \in J$.

For $g: A \rightarrow \prod_{j \in J} M_j$, define $\tilde{g}_j = \pi_j \circ g : A \rightarrow M_j$, there must exist $\tilde{g}_j : B \rightarrow M_j$ such that

$$\begin{array}{ccccc} 0 & \rightarrow & A & \xrightarrow{f} & B \\ & & \searrow \tilde{g}_j & \uparrow & \downarrow \exists \tilde{g}_j \\ & & M_j & & \end{array} \quad \pi_j g = \tilde{g}_j f$$

Then define $\tilde{g}: B \rightarrow \prod_{j \in J} M_j$ as $b \mapsto (\tilde{g}_j(b))_{j \in J}$, which is a R -module map and $\tilde{g} f(a) = (\tilde{g}_j(f(a)))_{j \in J} = (\pi_j g(a))_{j \in J} = g(a)$.

" \Rightarrow " We need to show

$$\begin{array}{ccc} 0 & \rightarrow & A & \xrightarrow{f} & B \\ & & \downarrow h_j & \nearrow \exists \tilde{h}_j & \\ & & M_j & & \end{array}$$

Define $h: A \rightarrow \prod_{j \in J} M_j$, $a \mapsto (h_j(a))_{j \in J}$, there exists \tilde{h} s.t.

$$h = \tilde{h} \circ f$$

Define $\tilde{h}_j = \pi_j \circ \tilde{h}$, we are done.

(III) Baer criterion and its application.

Every R module is a quotient module of a projective module.
 \Updownarrow dual

Every R module is a submodule of an injective module.

Lemma 6.3 (Baer criterion). A left R module M is injective iff every R module map $f: I \rightarrow M$, where $I \subseteq R$ is an ideal, can be extended to R .

$$\circ \longrightarrow I \xrightarrow{\iota} R$$

$$f \downarrow \quad \swarrow \exists \tilde{f}$$

$$M$$

Proof. " \Rightarrow ": This is obvious, since inclusion $\iota: I \rightarrow R$ is monic.

" \Leftarrow ": To show M is injective, consider

$$\circ \longrightarrow A \xrightarrow{f} B$$

$$h \downarrow$$

$$M$$

We can simply regard $\text{Im } f$ the same as A , i.e., using $a \in B$ to represent $fa \in B$. We need to extend h to B .

Let X be the set of pairs (A', h') when $A \subseteq A' \subseteq B$ and $h': A' \rightarrow M$ extends h , meaning $h'|_A = h$. Define a partial order

$$(A', h') \preceq (A'', h'') \text{ iff } A' \subseteq A'', h''|_{A'} = h'.$$

Using Zorn's lemma, there must exists a maximal element (A_0, h_0) in X .

If $A_0 = B$, we are done. Now assume $A_0 \neq B$.

There is $b \in B$ and $b \notin A_0$.

Define $I = \{r \in R : rb \in A_0\}$, I is an ideal of R .

Define $f: I \rightarrow M$ as $f(r) = h_0(r \cdot b)$, by assumption, this can extend to R as $\tilde{f}: R \rightarrow M$. Now, define $A_1 = A_0 + \langle b \rangle$, and $h_1: A_1 \rightarrow M$ as

$$h_1(a_0 + rb) := h_0(a_0) + r\tilde{f}(1).$$

This means $(A_1, h_1) \in X$ and $(A_1, h_1) \succ (A_0, h_0)$, which leads a contradiction of maximality of (A_0, h_0) .

Def 6.2 Let R be an integral domain, D is R module. If for any $y \in D$, and $0 \neq r \in R$, there is $x \in D$ such that $rx = y$, the D is called divisible.

Remark. This means $0 \neq r \in R$, $r \mapsto (r) : D \rightarrow D$ defines a surjective map.

Example 6.1. \mathbb{Q} is divisible as a \mathbb{Z} module.

Example 6.2. \mathbb{Q}/\mathbb{Z} is divisible as \mathbb{Z} module.

Example 6.3. \mathbb{Z} is not divisible as \mathbb{Z} module.

Prop 6.4 Let R be an integral domain, then quotient of divisible module is divisible.

Prop 6.5 Let R be PID, then D is injective iff D is divisible.

Prop 6.6 Every abelian group can embed into a divisible abelian group (injective \mathbb{Z} module).

For commutative ring R and abelian group A , $\text{Hom}_{\mathbb{Z}}(R, A)$ is abelian group.

Define $R \times \text{Hom}_{\mathbb{Z}}(R, A) \rightarrow \text{Hom}_{\mathbb{Z}}(R, A)$

$$(r, f) \mapsto rf: a \mapsto fa \cdot r$$

then $\text{Hom}_{\mathbb{Z}}(R, A)$ is a R module.

Lemma 6.7 If D is divisible abelian group, then $\text{Hom}_{\mathbb{Z}}(R, D)$ is injective R module.

Theorem 6.8. Every R module can embed into an injective R module.

Proof. • Given $M \in R\text{Mod}$, it is an abelian group, thus $M \in \mathbb{Z}\text{Mod}$.

From prop 6.6, M can embed into a divisible abelian group D , $M \xrightarrow{f} D$.

Consider $0 \rightarrow M \xrightarrow{f} D$ in $\mathbb{Z}\text{Mod}$, $R \in \mathbb{Z}\text{Mod}$, we see $\text{Hom}(R, f)$ is monic. $0 \rightarrow \text{Hom}_{\mathbb{Z}}(R, M) \xrightarrow{f_*} \text{Hom}_{\mathbb{Z}}(R, D)$.

• Since $\text{Hom}_{\mathbb{Z}}(R, M)$, $\text{Hom}_{\mathbb{Z}}(R, D)$ are both R modules, we need to show f_* is an R module map, in this way, we obtain a R module embedding.

For $r, a \in R$, $\alpha \in \text{Hom}_{\mathbb{Z}}(R, M)$,

$$\begin{aligned} [f_*(r\alpha)](\alpha) &= (f \circ r\alpha)(\alpha) = f(r \cdot \alpha(\alpha)) = f(\alpha(r\alpha)) = [f_*(\alpha)](r\alpha) \\ &= (r \cdot f_*)(\alpha). \end{aligned}$$

Thus f_* is R module map.

• Notice $\text{Hom}_R(R, M) \cong \text{Hom}_{\mathbb{Z}}(R, M)$. As R modules

$$\text{Hom}_R(R, M) \leq \text{Hom}_{\mathbb{Z}}(R, M).$$

But we know $M \cong \text{Hom}_R(R, M)$, thus we have (in $R\text{Mod}$)

$$M \xrightarrow{\cong} \text{Hom}_R(R, M) \hookrightarrow \text{Hom}_{\mathbb{Z}}(R, M) \xrightarrow{f_*} \text{Hom}_{\mathbb{Z}}(R, D).$$

Since D is divisible, prop 6.7 guarantees $\text{Hom}_{\mathbb{Z}}(R, D)$ is injective.