

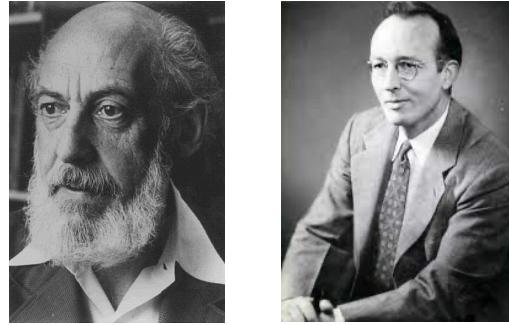
Chapter 2 Categories

§2.1 Definition of Categories

- Definition of categories.
- Examples of categories.

(I) Definition of categories

The notion of category was introduced by S. Eilenberg and S. MacLane in 1942.



Slogan: Morphisms are the most crucial notion!

Def 2.1. A category \mathcal{C} consists of the following data:

- (1) A class of objects $\text{Ob } \mathcal{C}$.
- (2) For any $A, B \in \text{Ob } \mathcal{C}$, there is a set $\text{Hom}(A, B)$, $f \in \text{Hom}(A, B)$ is called morphism from A to B , denoted as $f: A \rightarrow B$.
- (3) For any triple A, B, C , there is a composition

$$\begin{aligned} \text{Hom}(B, C) \times \text{Hom}(A, B) &\longrightarrow \text{Hom}(A, C) \\ (g, f) &\longmapsto g \circ f. \end{aligned}$$

They satisfy:

- (i) $\text{Hom}(A, B) = \text{Hom}(A', B')$ iff $A = A'$ and $B = B'$
- (ii) For any $f \in \text{Hom}(A, B)$, $g \in \text{Hom}(B, C)$, $h \in \text{Hom}(C, D)$, we have

$$(h \circ g) \circ f = h \circ (g \circ f)$$

This means we can write down $f_1 \circ \dots \circ f_n$ without ambiguity.

- (iii) For any $A \in \text{Ob } \mathcal{C}$, there is a special element $\text{id}_A \in \text{Hom}(A, A)$, called identity, which satisfies $\text{id}_A \circ f = f$ and $g \circ \text{id}_A = g$ for all $f \in \text{Hom}(B, A)$ and $g \in \text{Hom}(A, B)$.

Def 2.2. • If $\text{Ob } \mathcal{C}$ is a set, then \mathcal{C} is called a small category.

• Note we assume $\text{Hom}(A, B)$ be a set, this is not the case for general situation.

This is category enriched in Set. If $\text{Hom}(A, B)$ are sets for all A, B , the category is called locally small. In this sense, small category is category that is locally small and $\text{Ob } \mathcal{C}$ is a set.

Def 2.3 For $f \in \text{Hom}(A, B)$, if there is a $g \in \text{Hom}(B, A)$ such that

$$f \circ g = \text{id}_B \text{ and } g \circ f = \text{id}_A$$

f is call isomorphism and $f^{-1} := g$. In this case, A and B are called isomorphic.

Def 2.4 For category \mathcal{C} , \mathcal{D} is called a subcategory of \mathcal{C} iff

(1) $\text{Ob } \mathcal{D} \subseteq \text{Ob } \mathcal{C}$

(2) $\text{Hom}_{\mathcal{D}}(A, B) \subseteq \text{Hom}_{\mathcal{C}}(A, B)$.

If for any A, B , $\text{Hom}_{\mathcal{D}}(A, B) = \text{Hom}_{\mathcal{C}}(A, B)$, \mathcal{D} is called a full subcategory of \mathcal{C} .

(II) Examples of categories.

Exp 1. The category of sets : Set

Exp 2. The group category : Grp

Exp 3. The Abelian group category: Ab

Exp 4. The ring category : Ring ; (Unital ring Ring_1)

Exp 5. The commutative ring category : CRing

Exp 6. The category of \mathbb{F} -vector spaces: $\text{Vect}_{\mathbb{F}}$

Exp 7. The category of modules : ${}_R\text{Mod}$, Mod_R , ${}_R\text{Mod}_S$.

Exp 8. The category of topological spaces: Top

Exp 9. For partially-ordered set (poset), take $\text{Ob } \mathcal{C} = P$, for any $a, b \in P$, define

$$\text{Hom}(a, b) = \begin{cases} \{*\}, & a \leq b \\ \emptyset, & a \not\leq b \end{cases} \quad \{*\} \text{ means single point set.}$$

This is a category.

Exp 10. Let $\text{Ob } \mathcal{C} = \{*\}$, $\text{Hom}(*, *) = G$ group G (or monoid G). \mathcal{C} is a category.