

Chapter 2 Categories

2.4 representable functor and adjoint functor

- Representable functor
- Adjoint functor

(I) Representable functor

For any category \mathcal{C} , there are two functors from \mathcal{C} to Set

(1) Covariant $h_A = \text{Hom}_{\mathcal{C}}(A, \bullet)$

(2) Contravariant $h^B = \text{Hom}_{\mathcal{C}}(\bullet, B)$

Def. 4.1 Let \mathcal{C} be a category, $F: \mathcal{C} \rightarrow \text{Set}$ a covariant functor. If there is $A \in \text{Ob } \mathcal{C}$ and natural isomorphism

$$\alpha: \text{Hom}_{\mathcal{C}}(A, \bullet) \longrightarrow F$$

we say F is representable. The pair (A, α) is called representative of F .

Similarly, contravariant $F: \mathcal{C} \rightarrow \text{Set}$ is called representable iff there exists B such that $F \cong h^B = \text{Hom}_{\mathcal{C}}(\bullet, B)$.

Example 4.1 Let \mathcal{C} be a concrete category, and $X \in \text{Ob } \mathcal{C}$, define a set valued functor $F: \mathcal{C} \rightarrow \text{Set}$ as follows

$$F(A) = \text{Hom}_{\text{Set}}(X, A).$$

$$F(f) = \text{Hom}_{\text{Set}}(X, f) = f_*$$

Suppose V is a free object over X , meaning there is $i: X \rightarrow V$ such that for any $g: X \rightarrow Y$, there is a unique \tilde{g} such that $\tilde{g} \circ i = g$

$$\begin{array}{ccc} X & \xrightarrow{i} & V \\ & \searrow g & \downarrow \exists! \tilde{g} \\ & & Y \end{array}$$

F is representable with representative (V, α) where $\alpha: \text{Hom}(V, \bullet) \rightarrow F$ is defined as

$$\begin{aligned} \alpha_A: \text{Hom}_{\mathcal{C}}(V, A) &\longrightarrow \text{Hom}_{\text{Set}}(X, A) \\ \tilde{g} &\longmapsto \tilde{g} \circ i \end{aligned}$$

Example 4.2. Let Mod_R be the category of R module, and $A, B \in \text{Mod}_R$. Define functor $F: \text{Mod}_R \rightarrow \text{Set}$ as follows:

$$\begin{array}{ccc} C & \longmapsto & \text{Hom}_{\text{bilinear}}(A \times B, C) = F(C) \\ \downarrow g & \rightsquigarrow & F(g) \\ D & & \end{array}$$

$$A \times B \xrightarrow{\text{bilinear}} \begin{array}{c} F(C) \\ \downarrow \\ F(D) \end{array} \xrightarrow{f} C \xrightarrow{g} D$$

Then F is representable by $(A \otimes_R B, \alpha)$ with α defined as

$$\alpha: \text{Hom}_{\text{Mod}_R}(A \otimes_R B, \cdot) \longrightarrow F$$

$$\begin{array}{ccc} \text{Hom}_{\text{Mod}_R}(A \otimes_R B, C) & \xrightarrow{\alpha_C} & F(C) = \text{Hom}_{\text{bilinear}}(A \times B, C) \\ h & \longmapsto & h \circ i \end{array}$$

where $i: A \times B \longrightarrow A \otimes_R B$ is canonical map.

Lemma (Yoneda lemma). Let $F: \mathcal{C} \longrightarrow \text{Set}$ be a functor, then the natural transformations from F to $h_A = \text{Hom}_{\mathcal{C}}(A, \cdot)$ are in one-to-one correspondence with $F(A)$:

$$\text{Nat}(F, h_A) \cong F(A).$$

Moreover, this isomorphism is natural in A and F when both sides are regarded as functors from $\text{Fun}(\mathcal{C}, \text{Set}) \times \mathcal{C}$ to Set .

Example. $\text{Nat}(h_A, h_B) \cong h_A(B) = \text{Hom}_{\mathcal{C}}(A, B)$.

(II) Adjoint functor

Def. For two categories \mathcal{C} and \mathcal{D} , the product category $\mathcal{C} \times \mathcal{D}$ is defined as

- $\text{Ob } \mathcal{C} \times \mathcal{D} = \{ (X, Y) \mid X \in \text{Ob } \mathcal{C}, Y \in \text{Ob } \mathcal{D} \}$
- $\text{Hom}_{\mathcal{C} \times \mathcal{D}}((X, Y), (A, B)) = \text{Hom}(X, A) \times \text{Hom}(Y, B)$

$$(X, Y) \xrightarrow{(f, g)} (A, B) \xrightarrow{(k, l)} (C, D)$$

$(k \circ f, l \circ g)$

- We can consider $F: \mathcal{C} \times \mathcal{D} \rightarrow \text{Set}$, a typical example is $\text{Hom}(\cdot, \cdot)$

covariant
↓
↑
contravariant

$$\text{Hom}_{\mathcal{C}}(\cdot, \cdot) : \mathcal{C}^{\text{op}} \times \mathcal{C} \longrightarrow \text{Set}$$

$$(X, Y) \longmapsto \text{Hom}_{\mathcal{C}}(X, Y)$$

$$\begin{array}{ccc} (X, Y) & & \text{Hom}_{\mathcal{C}}(X, Y) & & S \in \text{Hom}_{\mathcal{C}}(X, Y) \\ \downarrow (f, g) & \rightsquigarrow & \downarrow \text{Hom}_{\mathcal{C}}(f, g) & & \downarrow \\ (X', Y') & & \text{Hom}_{\mathcal{C}}(X', Y') & & g \circ S \circ f^{\text{op}} \end{array}$$

$$\begin{array}{ccc} X & \xrightarrow{S} & Y \\ \uparrow f^{\text{op}} & & \downarrow g \\ X' & \longrightarrow & Y' \end{array}$$

- Consider covariant functors $F: \mathcal{C} \rightarrow \mathcal{D}$, $G: \mathcal{D} \rightarrow \mathcal{C}$. Then both of

- $\text{Hom}_{\mathcal{D}}(F(\cdot), \cdot)$
- $\text{Hom}_{\mathcal{C}}(\cdot, G(\cdot))$

are functors from $\mathcal{C}^{\text{op}} \times \mathcal{D}$ to Set .

A natural transformation $\alpha: \text{Hom}_{\mathcal{C}}(\cdot, G(\cdot)) \rightarrow \text{Hom}_{\mathcal{D}}(F(\cdot), \cdot)$ is a set of maps

$$\alpha_{X, Y} : \text{Hom}_{\mathcal{C}}(X, G(Y)) \longrightarrow \text{Hom}_{\mathcal{D}}(F(X), Y)$$

such that for $f: X \rightarrow X$, $g: Y \rightarrow Y'$, the following diagram commutes

$$\begin{array}{ccc} \text{Hom}_{\mathcal{C}}(X, G(Y)) & \xrightarrow{\alpha_{X, Y}} & \text{Hom}_{\mathcal{D}}(F(X), Y) \\ \downarrow \text{Hom}_{\mathcal{C}}(f, G(g)) & & \downarrow \text{Hom}_{\mathcal{D}}(F(f), g) \\ \text{Hom}_{\mathcal{C}}(X', G(Y')) & \longrightarrow & \text{Hom}_{\mathcal{D}}(F(X'), Y') \end{array}$$

Def 4.2 Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be two functors. If there exists a natural isomorphism

$$\alpha: \text{Hom}_{\mathcal{C}}(C\bullet, G\bullet) \longrightarrow \text{Hom}_{\mathcal{D}}(F\bullet, \bullet)$$

we say that F is left adjoint of G and G is right adjoint of F .

Denote $F \dashv G$.

Example. In section 7 we prove that

$$\text{Hom}_R(CA \otimes_R B, C) \cong \text{Hom}_R(A, \text{Hom}_R(B, C))$$

This means $\bullet \otimes_R B \dashv \text{Hom}(B, \bullet)$.

Prop 4.2 Functor $G: \mathcal{D} \rightarrow \mathcal{C}$ has left adjoint iff for any $C \in \text{ob } \mathcal{C}$, hom-functor $\text{Hom}(C\bullet, G\bullet)$ is representable.

Proof. " \Rightarrow " Let $F \dashv G$, then there is natural isomorphism

$$\alpha_{C, D}: \text{Hom}_{\mathcal{D}}(F(C), D) \xrightarrow{\cong} \text{Hom}_{\mathcal{C}}(C, G(D))$$

Fix C , we see $\text{Hom}_{\mathcal{D}}(F(C), \bullet) \cong \text{Hom}_{\mathcal{C}}(C, G(\bullet))$, meaning $\text{Hom}(C, G(\bullet))$ is representable.

" \Leftarrow " Suppose $(A\bullet, \alpha)$ be representative of $\text{Hom}_{\mathcal{C}}(C, G(\bullet))$

Define $F(C) = A\bullet$, we can check

$$\text{Hom}(F(\bullet), \bullet) \xrightarrow{\cong} \text{Hom}(\bullet, G(\bullet)).$$