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Chapter 1

The classical bosonic string

That which does not kill us
makes us stronger.

By Friedrich Nietzsche
From the book “Twilight of the

Idols”

In the usual physical discussion, the elementary physical particles are
mathematically modeled as point particles in spacetime. In string theory,
they are regarded as strings, one-dimensional extended objects; or p-branes,
p-dimensional extended objects. And the spacetime dimension of the usual
physics is 4, one time and three space dimensions. In string theory, we will
see that the spacetime manifold has more dimensions. For bosonic string the-
ory, the critical dimension D = 26 will be our main focus in these lecture
notes. Thus, in general, we will consider a p-brane moving in D-dimensional
spacetime, we denote it as Dp-brane:

• point particle: D0-brane
• string particle: D1-brane
• general particle: Dp-brane

When a Dp-brane moving in spacetime, it will sweep a p + 1-dimensional
world-volume manifoldΣ. We will describe this world-volume theory as a field
theory over the (p + 1)-dimensional space (world-volume coordinate space).
For string (D1-brane) case, the world-volume is two-dimensional, we call it
world-sheet, the world-sheet theory thus is described byD scale fieldsXµ(σα)
over the 2-dimensional world-sheet coordinate space (σ0,σ1).

Although string and general (p ≥ 2)-brane shares a lot similarities, there
are also some crucial things make string case different

• Stings’ action has a Weyl rescaling symmetry because of their two-
dimensional world-sheet, which makes quantum perturbation theories pos-
sible.

7



8 1.1. THE RELATIVISTIC POINT PARTICLE

• The world-sheet quantum theories are renormalizable in the usual quan-
tum field theory sense, but that is not the case for (p ≥ 2)-branes.

• (p ≥ 2)-brane has self-interaction.

In this chapter, we will discuss the classical theory of the bosonic string
via the field theory approach. Both of the closed and open strings will be
discussed in detail.

§ 1.1 The relativistic point particle

Let us first recall some basics about the relativistic dynamics and the La-
grangian of the particle. To begin with, we first introduce the two abbrevia-
tions frequently used in relativity

β =
v

c
, γ =

1!
1− ( vc )

2
,

where v is the velocity of frame K ′ relative to frame K.
The first and the most important thing of relativity is Lorentz transfor-

mation "
###$

###%

x′ = γ(x− βct)

y′ = y

z′ = z

ct′ = γct− βx

(1.1)

The space time coordinates are xµ = (ct,x), the convention we use for the
metrics are gµν = diag(+1,−1,−1,−1) and ηµν = (−1,+1,+1,+1). In this
note we will use the ηµν metric for Minkowski spacetime. The rest and dy-
namical mass of a particle are denoted as m and m(v), we have the following
crucial formulae

m(v) = γm,

p = m(v)v = γmv,

F =
d

dt
p ⇒ Ek = m(v)c2 −mc2,

E = Ek +mc2 = m(v)c2 = γmc2,

E2 = p2c2 +m2c4.

To write down the Lagrangian, recall that for point particle moving in
spacetime, spacetime displacement is

ds2 = ηµνdx
µdxnu = −c2dt2 + (dx)2 = −c2dτ2
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thus we have dt = γdτ , where τ is the proper time. Suppose the Lagrangian
is L, then the action is

S =

& tf

ti

Ldt =

& τf

τi

γLdτ. (1.2)

Since dτ is Lorentz invariant, to make S Lorentz invariant, γL should also
be Lorentz invariant. For free particle, the rest energy E0 = mc2 is Lorentz
invariant, it is natural for us to choose γL ∝ mc2, in fact, the coefficient can
be chose as −1, viz, γL = −mc2,

L = −mc2

γ
= −mc2

'
1− v2

c2
. (1.3)

It’s easily checked that pi = − ∂L
∂vi = γmvi, which is consistent with the

formula of relativistic momentum. In general, L = −mc2

γ −V , the Hamiltonian
will be

H = v · p− L = mc2 + Ek + V = Etot.

From the above discussion, the action of relativistic free particle is (using
cdτ =

√
−ds2)

S =

& τf

τi

−mc2dτ =

& f

i

−mc
!
−ds2 = −mc

& f

i

!
−ds2. (1.4)

We see that S is the the length of spacetime path of the particle, thus the
real path is the one which take the minimum of the spacetime path length
with fixed initial and final point.

In the above discussion, to make things more clear, we used the SI unit.
From now on, we will work in natural unit, i.e., we set c = 1, ! = 1.

1.1.1 Parametrizing the world-line

Consider the D-dimensional Minkowski spacetime R1,D−1 with metric

ηµν = diag(−1,+1, · · · ,+1).

We’ve seen that the action of the free particle is

S = −m

& tf

ti

!
1− ẋ2,

which is correct, but there is some disharmony of the action, since the time
and space coordinates are not on equal footing, which is not consistent with
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the philosophy of relativity. Actually we choose time t as the parameter to
describe the world-line, i.e., Xµ(t) = (t,x(t)). Hereinafter, we will use the
capital letter Xµ to denote spacetimes coordinates and to stress that it is
a function depends on some parameters. For world-line case, we can repa-
rameterize the the world-line with some new parameter τ(here the symbol τ
is not necessarily the proper time). The world-line Xµ(τ) is a parametrized
Xµ : [τi, τf ] → R1,D−1 in spacetime space R1,D−1. The action is the length
of the world-line, thus parametrized by τ , we have

S = −m

& τf

τi

(
ηµνẊµẊνdτ, (1.5)

where Ẋµ = dXµ/dτ .
Now the space and time are treated on equal footing, they both are func-

tions of some parameter τ .

1.1.2 Einbein field action

The action of the point particle

S = −m

& f

i

!
−ds2 = −m

& f

i

!
−ηµνdXµdXν

has two shortcomings: the action has a square root that is highly nonlinear,
which make its quantization difficult; the action describes only massive par-
ticle. To overcome these two shortcomings, an auxiliary field e(τ) over the
world-line, known as einbein field , is introduced,

L =
Ẋ2

2e(τ)
− e(τ)m2

2
. (1.6)

Hereinafter, terms like Ẋ2 will always mean an implicit contraction with the
spacetime Minkowski metric. The action is

S =

& f

i

Ldτ.

Under reparameterization τ → τ ′(τ), we have

Xµ(τ) → X ′µ(τ ′) = Xµ(τ), (1.7)

ηµν(X(τ)) → η′µν(X
′(τ ′)) = ηµν(X(τ)), (1.8)

e(τ) → e′(τ ′) = e(τ)
dτ

dτ ′
. (1.9)



CHAPTER 1. THE CLASSICAL BOSONIC STRING 11

Note that here the transformation of e(τ) is chosen in this form to make the
variation of action δS = 0. The Euler-Lagrange equation for the field µ(τ) is

d

dτ

∂L

∂ė
− ∂L

∂e
= 0, (1.10)

which gives e =
!
−Ẋ2/m for m ∕= 0. Substituting it into the Lagrangian

(1.6), we obtain the original square root form.
There is a lot of reasons to deal with the Lagrangian rather than the origi-

nal form. The action appear naturally in Feynman-Schwinger representation
for the propagator of the relativistic particle and this Lagrangian is can be
most straightforwardly generalized for the case of spin particles. This La-
grangian is in the quadratic form which is more easily to quantize. Besides,
the original Lagrangian is singular when m = 0, but the one here is not, thus
it can be used to describe massless particle.

§ 1.2 The p-brane and Nambu-Goto action

The action of the point particle is expressed as the length of world-line mul-
tiply the mass of the particle, this can be generalized the case of strings and
p-branes. For a string moving is spacetime, it sweeps a world sheet, thus the
action is naturally the area of the world-sheetmultiply a factor which charac-
terize the internal properties of the string. For a p-brane moving in spacetime,
it sweeps a world-volume, the action thus is the volume multiplies a factor
which characterize the internal properties of the p-brane.

As the point particle are 0-branes, strings are 1-branes, it’s sufficient to
write down the unified p-brane action

Sp = −Tp

&
dVp, (1.11)

where Tp us called p-brane tension, for 0-brane it’s the mass of the particle,
and dVp is the p+ 1-dimensional volume element of the world-volume swept
by the p-brane.

Let’s take a close look at dVp. The p + 1-dimension world-volume can
be parameterized by p+ 1 independent parameters σ0,σ1, · · · ,σp, known as
world-volume coordinates. σ1, · · · ,σp can be regarded as parameters which
parameterize the p-brane, for example, in the string case, σ1 is the param-
eter to describe the position of the point in the string, and σ0 is a timelike
coordinates.

From differential geometry, we known that p+ 1-dimension world-volume
is embedded in R1,D−1, it has a metric induced by the metric of the spacetime

Gαβ = ηµν∂αX
µ∂βX

ν = ∂αX · ∂βX, α,β = 0, · · · , p. (1.12)
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The world-volume element is then dVp =
!
− detGαβd

p+1σ. In summary, we
can rewrite the p-brane action as

Sp = −Tp

& !
− detGαβd

p+1σ. (1.13)

Now let us gives some comments about the name of p-brane tension for
Tp. Since the action is dimensionless, notice that world-volume coordinates
σα are also dimensionless, from the dimension of Xµ, we see that dVp has
the unit [length]p[time]1, the dimension of Tp is

[Tp] =
[time]−1

[length]p
=

[mass]1

[length]p
, (1.14)

the mass per unit p-volume, thus called tension.

1.2.1 The Nambu-Goto action

Let’s now focus on the string (1-brane) action, which, because of its im-
portance, has special name, Nambu-Goto action. We will parameterize the
world-sheet by timelike coordinates σ0 = τ and spacelike coordinates σ1 = σ.
There are two kinds of strings, closed and open strings, for both cases we as-
sume σ ∈ [0,π]. When the string moving in spacetime, it sweeps a world-sheet

Xµ(τ,σ), µ = 0, · · · , D − 1, (1.15)

which is noting but a parameterized surface in R1,D−1. The coordinates
σα = (τ,σ) is called world-sheet coordinates. Since the world-sheet mani-
fold is embedded in spacetime manifold, the spacetime manifold is sometimes
referred to as target space to distinguish it form the world-sheet.

The difference between open and closed string world-sheetis that they have
different boundary conditions, the closed string must satisfy the periodic
boundary condition Xµ(τ,σ + π) = Xµ(τ,σ), the open string case is more
complicated and we will discussion it later.

The action we have construct for p-brane seems a little abstract if you
are not familiar with differential geometry. Now let us take the world-
sheetcase as a concrete example to make you feel more comfortable with
it. For the world sheet, we are concerning about the area element of the
world sheet. Let us check here that

!
− detGαβdσdτ is actually the area

element. This can be done more conveniently in Euclidean space RD, the
philosophy is completely the same for Minkowski space. For a parameterized
surface X(τ,σ) = (X1(τ,σ), · · · , XD(τ,σ)) in RD, two linearly independent
tangent vectors are
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V

W

Fig. 1.1 The open string world-sheet parameterized by τ and σ.

du = ∂τXdτ, dv = ∂σXdσ. (1.16)

The area element expanded by du and dv are dA = |du×dv| = |u||v| sin θdτdσ.
Recall that the induced metric on world-sheetis

Gαβ = ∂αX · ∂βX =

)
u2 u · v
v · u v2

*
. (1.17)

We see that

!
detGαβdσdτ =

!
u2v2 − (u · v)2dσdτ =

!
u2v2(1− cos2 θ)

= |u||v| sin θdτdσ = dA, (1.18)

which shows the consistency of the the area element. In Minkowski spacetime,
since the induced metric Gαβ is not positive, thus minus sign is introduced

dA =
!
− detGαβdσdτ. (1.19)

Now let us introduce the notation

Ẋµ = ∂τX
µ, Xµ′ = ∂σX

µ. (1.20)

The induced metric of world-sheetcan then be written as

Gαβ =

)
Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

*
. (1.21)

The Nambu-Goto action can be written as

SNG = −T

&
dσ2

(
(Ẋ ·X ′)2 − Ẋ2X ′2 (1.22)
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The string tension T is the mass per unit length, it has a close relationship
with the universal Regge slop α′ and string scale ls,

T =
1

2πα′ , l2s = 2α′. (1.23)

Since the spacetime coordinates has dimension [Xµ] = [length] = [time], thus
the world-sheetcoordinates τ,σ are dimensionless. From the dimension of T
we see that [α] = [length]2, thus ls has the unit of length. Length scale ls is
the natural length in string theory, and in some sense, it is the only parameter
of the string theory.

1.2.2 Symmetries of Nambu-Goto action

• The Nambu-Goto action has a global symmetry, Poincaré symmetry of
the spacetime: Xµ → Λµ

νX
ν + cµ. In world-sheet coordinates, this means

that Poincaré transformation Λµν and cµ do not depends on world-sheet
coordinates σα.

• Another symmetry is the reparameterization invariance, which is a gauge
symmetry. This reflects the fact that there is a redundancy of our descrip-
tion of the theory, viz., world-sheet coordinates have no physical meaning.

1.2.3 Equation of motion and boundary conditions

As we usually do in field theory, it is convenient for us to introduce the
momenta

Pτ
µ =

∂L
∂Ẋµ

= −T
(Ẋ ·X ′)X ′

µ − (X ′2)Ẋµ(
(Ẋ ·X ′)2 − Ẋ2X ′2

, (1.24)

Pσ
µ =

∂L
∂X ′µ = −T

(Ẋ ·X ′)Ẋµ − (Ẋ2)X ′
µ(

(Ẋ ·X ′)2 − Ẋ2X ′2
. (1.25)

The equation of motion is

∂τPτ
µ + ∂σPσ

µ = 0. (1.26)

It’s easily checked that, the equation of motion can be rewritten as

∂α
√
− detGGαβ∂βX

µ, (1.27)

where Gαβ is the inverse of the induced metric Gαβ ,
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Gαβ =
1

(−Ẋ ·X ′)2 + Ẋ2X ′2

)
X ′ ·X ′ −Ẋ ·X ′

−X ′ · Ẋ Ẋ · Ẋ

*
. (1.28)

The equation of motion looks terrible, since it is highly non-linear, so we
won’s solve it here but instead introduce some new equivalent action and
solve the new simplified equation of motion.

The boundary conditions are also very crucial in string theory. As for the
usual partial differential equations, there are several different types of bound-
ary conditions. But here we must ask what kind of boundary conditions are
physically meaningful. For closed string the boundary condition is periodicity
condition, i.e., Xµ(τ,σ + π) = Xµ(τ,σ).

For open string, there two different types of boundary condition:

• Neumann boundary condition.

∂σX
µ = 0, at σ = 0,π. (1.29)

Since there is no restriction of the string endpoints δXµ(σ = 0,π), the
endpoints can move freely. As we will see later, this constraint means that
the endpoint of the string moves with speed of light.

• Dirichlet boundary condition.

δXµ = 0, at σ = 0,π. (1.30)

This means that the string endpoints lie at some fixed position in space,
i.e., Xµ(σ = 0) = Xµ

0 and Xµ(σ = π) = Xµ
π .

§ 1.3 The Polyakov action

The Nambu-Goto action is a straightforward generalization of the relativistic
point particle action. For the action of relativistic point particle, we have
seen that to overcome the shortcoming of the action that there is a square-
root which makes it difficult to do quantization and to include the massless
case, an equivalent action, einbein field action is introduced. Similarly, we can
construct an equivalent action to Nambu-Goto action, known as Polyakov ac-
tion1, or string sigma action, which eliminates the square-root at the expense
of introducing another field hαβ . This new field hαβ is a dynamical metric of
the world-sheet, its inverse matrix is denoted as hαβ . The Polyakov action
reads

1 The action is was discovered by Brink, Di Vecchia and Howe and by Deser and
Zumino, but Polyakov understood how to do path integral with this action, thus the
action is is named after him. The path integral will be discussed later in this lecture
note.
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S = −T

2

&
d2σ

!
− dethαβh

αβ∂αX · ∂βX. (1.31)

Notice that we will frequently denote dethαβ simply by h whenever there is
no risk to make ambiguity.

In fact, although the square-root is now eliminated, the action still looks
nasty because of its complexity. In this section, we will try to simplify the
analysis of the physics of this action using the its gauge symmetry. As you will
see, the final result is really satisfactory, the equation of motion becomes our
familiar wave equations plus some constraints given by energy-momentum
tensor.

1.3.1 The equation of motion

From simple calculation, the equation of motion for Xµ is

∂α(
√
− dethhαβ∂βX

µ) = 0, (1.32)

which has the same form as the equation of motion for Nambu-Goto action,
but now hαβ is an independent field which has its own equation of motion.

To derive the equation of motion of the metic hαβ , we need a formula
about the variation of the determinant of a matrix M :

δ detM = detMtr(M−1δM) = −detMtr(MδM−1). (1.33)

Which you may have seen in relativity course, it can be prove in several
different ways, we leave it as an exercise.

Exercise 1.1. Prove that for a matrix M , the variation of its determinant is
of the following form

δ detM = detMtr(M−1δM) = −detMtr(MδM−1). (1.34)

The trick to remember the formula is to consider the 1× 1 matrix M = x, in
this case δ detM = δx.

Using the formula for the variation of the determinant, we have

δ
√
− deth = −1

2

√
− dethhαβδh

αβ =
1

2

√
− dethhαβδhαβ . (1.35)

Notice that there is no terms involving world-sheet derivatives of the field
hαβ in the Polyakov action, thus the equation of motion is δL/δhαβ = 0.
We will see that this is equivalent to the vanishing of the energy-momentum
tensor Tαβ .
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Energy-momentum tensor

There are two different ways to calculate the energy-momentum tensor here.
The first one is the usual Noether current method which you may have been
familiar from the quantum field course. This is usually used for the situation
where the spacetime is flat, i.e., no gravity. Another way, usually appears
in general relativity course, is the Hilbert energy-momentum tensor. This is
usually used for the action involving gravity.

Since the Polyakov action contains the world-sheet gravity hαβ , it is more
convenient to use the Hilbert energy-momentum tensor. By definition, the
Hilbert energy-momentum tensor is of the form

Tαβ = − 2

T

1√
− deth

δL
δhαβ

, (1.36)

where 1√
− deth

is introduced as a normalization factor.

Using the formula for variation of the determinant of a matrix, we obtain

δL
δhαβ

= −T

2
(
√
− deth∂αX ·∂βX− 1

2

√
− dethhαβh

ρσ∂ρX ·∂σX) = 0. (1.37)

This implies that hαβ = f(σ)∂αX ·∂βX = f(σ)Gαβ with f(σ) = 2/(hρσ∂ρX ·
∂σX). Substituting the expression into the the equation of motion of Xµ, the
factor f(σ) drops out, we obtain the equation of motion for Nambu-Goto
action.

The energy-momentum tensor reads

Tαβ = ∂αX · ∂βX − 1

2
hαβh

ρσ∂ρX · ∂σX. (1.38)

The equation of motion for hαβ is equivalent to Tαβ = 0.

1.3.2 Symmetries of the Polyakov action

There are three symmetries of the Polyakov action:

• Global Poincaré symmetry: Xµ → Λµ
νX

ν + Aµ and hαβ remains un-
changed. Here, the term “global” means that Λµ

ν , A
µ do not depend on

the world-sheet coordinates.
• Local diffeomorphism of the world-sheet (or reparameterization invari-

ance). This is a gauge symmetry, which indicates that world-sheet co-
ordinates do not have physical meaning. Consider the transformation
σ → σ′ = σ′(σ), under which, we have
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+
Xµ(σ) → X ′µ(σ′) = Xµ(σ′),

hαβ(σ) → h′
αβ(σ

′) = ∂σρ

∂σ′α
∂σσ

∂σ′β hρσ(σ).
(1.39)

Substituting them into the action, we find that the action remains un-
changed. In some situation, it will be convenient to work infinitesimally.
Consider the infinitesimal transformation σ′ = σ − η(σ) for some small
η(σ). The transformations of the fields then become,

+
δXµ(σ) = ηα∂αX

µ

δhαβ(σ) = ∇αηβ +∇βηα
(1.40)

where the covariant derivative is defined by ∇αηβ = ∂αηβ − Γ σ
αβησ with

Christoffel symbol of the Levi-Civita connection associated to the world-
sheet metric given by the usual expression,

Γ σ
αβ =

1

2
hσρ (∂αhβρ + ∂βhρα − ∂ρhαβ) . (1.41)

• Weyl symmetry. Let us first give some comments about the name for con-
venience of our later use. Weyl symmetry or Weyl invariance is usually
defined for field theory which is coupled with a background metric gµν .
For such theories, Weyl transformations are defined as a local rescaling
of the metric together with a transformation of the local operators. For
primary scalar operators O the transformation is

Weyl:

+
gµν(x) → Ω2(x)gµν(x)

O(x) → Ω−∆O (x)O(x)
(1.42)

where Ω(x) is an arbitrary non-vanishing function of background mani-
fold (in quantum field theory, the spacetime manifold, in string theory,
the world-sheet coordinate manifold), and ∆O is the dimension the opera-
tor O. There is a closely related but somehow different notion, conformal
invariance, which will be discussed in detail in the following chapters. Ac-
tually, many authors use two nomenclatures to mean the same thing. Here,
we stress that conformal transformations are special Weyl transformations
such that the transformed metric is diffeomorphic to the original metric:

Conformal:

+
gµν(x) +→ Ω2(x)gµν(x) = g′µν(x)

O(x) +→ Ω−∆O (x)O(x)
(1.43)

where g′µν is diffeomorphic to gµν

g′µν (x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x). (1.44)
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At this stage, you may feel confused about these stuffs, we recommend you
to turn back to read these statements after you have read the conformal
field theory chapter.
For the Polyakov action, the scalar field Xµ is coupled with the world-
sheet metric hαβ , the action has the Weyl symmetry. Under the Weyl
transformation

Xµ(σ) → Xµ(σ) (1.45)

while the metric transforms as

hαβ(σ) → Ω2(σ)hαβ = e2φ(σ)hαβ(σ). (1.46)

It’s easy to check that the Polyakov action is invariant under this trans-
formation, since hαβ is 2×2 matrix, the factor Ω2(σ) drops out, canceling
between

√
− deth and the inverse matrix hαβ . Notice that this holds only

for 2d world-sheet manifold. The Weyl symmetry is a local gauge symme-
try, thus it can be used to gauge away the unphysical degrees of freedom
of the theory.

1.3.3 Conformal gauge

The Polyakov action looks nasty to deal with, so we expect to simplify the
action using the gauge symmetry. There are three local gauge symmetries: two
local diffeomorphisms and one Weyl symmetry. The action hasD independent
variables Xµ and three independent variables h00, h01 = h10, h11.

First, let us consider the two local diffeomorphism symmetries. They can
reduce the three independent variables of hαβ into one independent vari-
ables. Specifically, we can choose the use the following gauge choice, known
as conformal gauge:

hαβ = e2φ(σ)ηαβ . (1.47)

We have another local gauge symmetry, Weyl symmetry, using which we
can remove the last independent component. By setting φ = 0, we can fix
the hαβ completely as

hαβ =

)
−1 0
0 1

*
(1.48)

We end up with a flat metric, which is, of course, a good news for us.
Actually such a flat worldsheet metric is only possible if there is no topo-

logical obstruction. This is the case when the worldsheet has a vanishing
Euler characteristic, e.g., a cylinder and a torus. In general, one can only
do this in a given coordinate patch (not a point), for a given world-sheet
manifold, we can do this in each given patch.

When a flat worldsheet metric is an allowed gauge choice (almost always
done in a given coordinate patch), the Polyakov action takes the simple form
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Sσ = −T

2

&
d2σ∂αX · ∂αX =

T

2

&
d2σ

,
Ẋ2 −X ′2

-
(1.49)

Here it seems the world-sheet dynamical metric disappears, but you should
always remember that it actually exists and is set as flat metric, and the
equation of motion of the metric reflects in the constraint of vanishing energy-
momentum tensor.

The equation of motion for Xµ now becomes

∂α∂αX
µ = 0, or,

.
∂2
σ − ∂2

τ

/
Xµ = 0, (1.50)

which is nothing but the usual wave equation. This is of course not equivalent
to the original complex form of the equation of motion for Xµ. We need to
add the constraint that Tαβ = 0. In our gauge choice, we have the following
constraint

T01 = T10 = Ẋ ·X ′ = 0 and T00 = T11 =
1

2

,
Ẋ2 +X ′2

-
= 0. (1.51)

Let us take a close look at the constraints Tαβ = 0. The first constraint

T01 = T10 = Ẋ · X ′ = 0 means that the σ = const. line and the τ = const.
in world-sheet are orthogonal to each other. The other ones will be discussed
use an example.

1.3.4 Boundary conditions

As we have pointed out before, for closed string, the boundary conditions
is Xµ(τ,σ + π) = Xµ(τ,σ). For open strings, there are two basic boundary
conditions we can impose on endpoints of the string:

• Neumann boundary condition ∂σX
µ
00
σ=0 or π

= 0. This is appropriate for

the free string endpoint. Since we have Pµ
σ = ∂L

∂X′µ = TX ′µ. This kind
of boundary condition means that there is no momentum flow off of the
endpoints of the string.

• Dirichlet boundary condition δXµ
00
σ=0 or π

or equivalently Pτ

00
σ=0 or π

=
∂L
Ẋµ

00
σ=0 or π

= 0. This means that the ends of the string are fixed in space-
time.

Although, we learn from partial differential equation course that that are
many other boundary conditions we can impose on the wave equations, how-
ever, these boundary conditions are of great importance in string theory, we
won’t discuss them here.
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§ 1.4 Mode expansions of the string

In the last section, we have seen that the equations of motion for Polyakov
action in flat gauge are

for Xµ : ∂2
σX

µ − ∂2
τX

µ = 0; (1.52)

for hαβ : T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0, (1.53)

T01 = T10 = Ẋ ·X ′ = 0. (1.54)

We will treat these two kind of constraints separately. Firstly, we give the
general solution of (1.52) in the Fourier expansion form with coefficient un-
dermined, which is known as mode expansion or oscillator expansion and the
constraints (1.53) and (1.54), known as Virasoro constraints , are added later
to the Fourier coefficients of the general solution.

As you may have seen before, the wave equation ∂2
σX

µ − ∂2
τX

µ = 0 can
be solved with d’Alembert method by introducing a new kind of variables
σ+ = τ + σ and σ− = τ − σ, which, in string theory, are known as world-
sheet light-cone coordinates. In terms of light-cone coordinates, we have

∂+ =
1

2
(∂τ + ∂σ), ∂− =

1

2
(∂τ − ∂σ), (1.55)

and the equation of motion simply read

∂+∂−X
µ = 0. (1.56)

The general solution of the equation is

Xµ(τ,σ) = Xµ
R(σ

−) +Xµ
L(σ

+), (1.57)

where Xµ
R(σ

−) and Xµ
L(σ

−) are two arbitrary functions which corresponds
to the right-moving waves and left-moving waves respectively, they can be
expressed in the following general form

Xµ
R(σ

−) =
xµ

2
+

l2s p
µ

2
σ− +

ils
2

1

k ∕=0

αµ
k

k
e−ikσ−

, (1.58)

Xµ
L(σ

+) =
xµ

2
+

l2s p̃
µ

2
σ+ +

ils
2

1

k ∕=0

α̃µ
k

k
e−ikσ+

. (1.59)

The αµ
k and α̃µ

k are arbitrary Fourier expansion coefficients. Since the field
Xµ(τ,σ) must be real, xµ, pµ, and p̄µ must also be real and we may also
derive the following reality condition for the αµ

k and α̃µ
k :

(αµ
k)

∗
= αµ

−k and (ᾱµ
k)

∗
= ᾱµ

−k (1.60)
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The expression is well-designed for the convenience of the quantization, as
you will see in the next chapter.

To determine the exact solution, we must add the boundary condition
constraints. We will discuss separately the cases for closed string, viz. the pe-
riodic boundary conditions; and the open string with (i) Neumann boundary
conditions; (ii) Dirichlet boundary conditions; and (iii) mixed boundary con-
ditions. The general solution takes a well-designed form of Fourier expansion
such that it is convenient for quantization, this kind of expansions are know
as mode expansions or oscillator expansions.

Before we start, let us first take a quick aside to give a short comment
about the convention of differential form and small displacement. We will
take the convention that dxdy := dx ∧ dy. This means dτdσ ∕= dσdτ . And
sometimes we will also use the notation dxdy to mean dx⊗dy, e.g., for metric
d2s = gµνdx

µdxν := gµνdx
µ ⊗ dxν . Rigorously speaking, italic ‘d’ means

an infinitesimal displacement, e.g., d2s and romanic ‘d’ means a differential
form. But we will take the risk to neglect this difference hereinafter as many
authors do, each time when you meet it, stop and think to make the meaning
clear. Here for light-cone coordinates, the expression may dσ+dσ− will be
used to mean dσ+ ∧ dσ− and dσ+dσ− will be used to mean dσ+ ⊗ σ−.
Similarly for other coordinates transforms. The metric in world-sheet light-
cone coordinates is

h̃αβ =

)
0 − 1

2
− 1

2 0

*
, h̃αβ =

)
0 −2
−2 0

*
. (1.61)

Thus, we have σ+ = −σ−/2 and σ− = −σ+/2.

1.4.1 Closed string case

For the closed string,Xµ(τ,σ+π) = Xµ(τ,σ), since it’s periodic, if we impose
the condition on the general solution (1.58) and (1.59), we must have k ∈ 2Z
and p̃µ = pµ. By redefining the αµ

k and α̃µ
k , we obtain the following mode

expansion for closed string:

Xµ
R(σ

−) =
1

2
xµ +

1

2
l2s p

µσ− +
1

2
ils

1

n ∕=0

1

n
αµ
ne

−2inσ−
, (1.62)

Xµ
L(σ

+) =
1

2
xµ +

1

2
l2s p

µσ+ +
1

2
ils

1

n ∕=0

1

n
α̃µ
ne

−2inσ+

. (1.63)



CHAPTER 1. THE CLASSICAL BOSONIC STRING 23

Here xµ and pµ are center-of-mass position and momentum as we will
check later. The requirement that Xµ

R(σ
−) and Xµ

L(σ
−) are real implies that

xµ and pµ are real and

αµ
−n = (αµ

n)
∗, α̃µ

−n = (α̃µ
n)

∗. (1.64)

We also recall here that l2s = 2α′ and T = 1/(2πα′). If we set αµ
0 = α̃µ

0 =
lsp

µ/2, the derivatives of the mode expansion take the form

∂−X
µ
R(σ

−) = ls
1

m∈Z
αµ
ne

−2inσ−
, (1.65)

∂+X
µ
L(σ

+) = ls
1

m∈Z
α̃µ
ne

−2inσ+

. (1.66)

From the above equalities, the derivatives with respect to τ and σ can easily
be obtained. Recall that ∂τ = ∂+ + ∂− and ∂σ = ∂+ − ∂−, we have

Ẋµ = ∂+X
µ
L(σ

+) + ∂−X
µ
R(σ

−) (1.67)

Xµ′ = ∂+X
µ
L(σ

+)− ∂−X
µ
R(σ

−). (1.68)

Now let us briefly demonstrate that xµ and pµ are center-of-mass position
and momentum. Consider Xµ(τ,σ) = Xµ

R(σ
−)+Xµ

L(σ
+), the center-of-mass

position is

Xµ
c (τ) =

1

π

& π

0

dσXµ(τ,σ) = xµ + l2s p
µτ. (1.69)

Thus, xµ is the center of mass at the initial time τ = 0 and is moving as a free
particle with velocity l2s p

µ. Since the momentum density is Pµ = δL/δẊµ =

TẊµ, the center-of-mass momentum is

pµc (τ) = T

& π

0

dσẊµ = T ls

& π

0

dσ
1

n∈Z
(αµ

ne
−2inσ−

+ α̃µ
ne

−2inσ+

)

=
1

ls
(αµ

0 + α̃µ
0 ) ≡ pµ. (1.70)

Thus the center-of-mass momentum is a constant pµ, which coincide with the
fact that the string is moving freely.

Poisson bracket

The canonical quantization of bosonic string is just a procedure to replace
the classical Poisson bracket to quantum bracket. Now let us calculate the
Poisson bracket for closed string mode expansion. For the Xµ field and the
corresponding momentum Pµ = TẊµ of Polyakov action in flat (or confor-
mal) gauge, we have the following equal-τ Poisson bracket
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[Xµ(τ,σ), Xν(τ,σ′)]PB = [Pµ(τ,σ),Pν(τ,σ′)]PB = 0, (1.71)

[Xµ(τ,σ),Pν(τ,σ′)]PB = T [Xµ(τ,σ), Ẋν(τ,σ′)]PB = ηµνδ(σ − σ′). (1.72)

How does this reflect in the mode expansion coefficients? Using Eqs. (1.65)-
(1.68) and by taking derivatives with respect to σ,σ′, the following equations
arise

[Xµ′(τ,σ), Xν ′(τ,σ′)]PB = [Ẋµ(τ,σ), Ẋν(τ,σ′)]PB = 0, (1.73)

[Xµ′(τ,σ), Ẋν(τ,σ′)]PB =
1

T
ηµν

d

dσ
δ(σ − σ′). (1.74)

From the above equations, the following Poisson brackets are obtained easily

[∂±X
µ(τ,σ), ∂±′Xν(τ,σ′)]PB = ±2Tgµν

d

dσ
δ(σ,σ′), (1.75)

[∂±X
µ(τ,σ), ∂∓′Xν(τ,σ′)]PB = 0. (1.76)

Then from above Poisson brackets and expanding the Dirac delta function
as δ(σ − σ′) = 1

π

2
n∈Z e

−2ni(σ−σ′), we can compare two sides to obtain the
Poisson brackets for the mode expansion coefficients.

[αµ
m,αν

n]PB = [α̃µ
m, α̃ν

n]PB = −imηµνδm+n,0, (1.77)

[α̃µ
m,αν

n]PB = 0, m, n ∈ Z, (1.78)

[xµ, xν ]PB = [pµ, pν ]PB = 0, [xµ, pν ]PB = ηµν , (1.79)

[xµ, α̃ν
n]PB = [pµ, α̃ν

n]PB = 0 = [xµ,αν
n]PB = [pµ,αν

n]PB, n ∕= 0. (1.80)

Exercise 1.2. Give a detailed proof of the Poisson brackets (1.77)-(1.78) for
mode expansion coefficients from the the Poisson brackets (1.71) and (1.72)
involve only Xµ and Pν .

Virasoro modes

Now let us consider the constraints (1.53) and (1.54) imposed by the equation
of motion of hαβ . In the world-sheet light-cone coordinate, they becomes

T++ = (∂+X)2 = (∂+XL)
2 = 0, T−− = (∂−X)2 = (∂−XR)

2 = 0. (1.81)

It’s obvious that they are equivalent to (1.53) and (1.54). And the other two
components vanish automatically,
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T+− =∂+X · ∂−X − 1

2
h̃+−h̃

αβ∂αX · ∂βX

=∂+X · ∂−X − 1

2
× (−1

2
)(−4∂+X · ∂−X) = 0. (1.82)

Similarly for T−+.
From the light-cone coordinates derivatives of the mode expansions (1.65)

and (1.66), we obtain

T−− = (∂−X)2 = l2s
1

k,m∈Z
αk · αme−2i(m+k)σ−

= l2s
1

m,n∈Z
αn−m · αme−2inσ−

= 2l2s
1

n∈Z
Lne

−2inσ−
= 0, (1.83)

where we have introduced a new term, called Virasoro generators

Ln =
1

2

1

m∈Z
αn−m · αm =

1

2πl2s

& π

0

T−−e
2inσ−

dσ. (1.84)

Similarly, from the left moving modes contribution T++, we introduce

L̃n =
1

2

1

m∈Z
α̃n−m · α̃m =

1

2πl2s

& π

0

T++e
2inσ+

dσ. (1.85)

They satisfy reality condition

L∗
n = L−n, L̃∗

n = L̃−n. (1.86)

The equation of motion for hαβ now can be expressed using the Virasoro
generators as

Ln = L̃n = 0, n ∈ Z. (1.87)

From the Poisson brackets for the oscillator modes, we can derive the
Poisson brackets for the Virasoro generators. They form an algebra known
as the classical Virasoro algebra:

[Lm, Ln]PB = −i(m− n)Lm+n (1.88)

[L̃m, L̃n]PB = −i(m− n)L̃m+n (1.89)

[Lm, L̃n]PB = 0 (1.90)
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Exercise 1.3. Prove the above Poisson brackets form the Poisson brackets
of the mode expansion coefficients.

Hamiltonian and energy-momentum tensor

1.4.2 Open string case

Let us now discuss the open string case. As we have pointed out, there are
three kind of combination of the boundary conditions we can impose on two
ends of the string.

Neumann-Neumann (NN) boundary condition

For the Neumann-Neumann (NN) boundary condition, we impose Neumann
boundary condition on both ends of the string. Consider the general solution
(1.58) and (1.59),

Xµ = xµ +
l2s
2
(pµσ− + p̃µσ+) +

ils
2

1

k ∕=0

1

k
(αµ

ke
−ikσ−

+ α̃µ
ke

−ikσ+

). (1.91)

Taking the derivative with respect to σ, we have

∂σX
µ =(∂+ − ∂−)(X

µ
L +Xµ

R)

=
l2s
2
(p̃µ − pµ) +

ls
2

1

k ∕=0

(α̃µ
ke

−ikσ+

− αµ
ke

−ikσ−
). (1.92)

For σ = 0, ∂σX
µ = 0

l2s
2
(p̃µ − pµ) +

ls
2

1

k ∕=0

(α̃µ
k − αµ

k)e
−ikτ = 0 (1.93)

implies that p̃µ = pµ and α̃µ
k = αµ

k . Then, for σ = π, ∂σX
µ = 0

ls
2

1

k ∕=0

αµ
ke

−ikτ (e−ikπ − eikπ) = 0 (1.94)

implies that k ∈ Z. In summary, we have the following mode expansion
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NN: Xµ = xµ + l2sp
µτ + ils

1

n ∕=0

1

n
αµ
ne

−inτcos(nσ) (1.95)

If we set αµ
0 = lsp

µ (note there is a 1/2 difference with the closed string
convention), we have

∂±X
µ =

ls
2

1

n∈Z
αµ
ne

−inσ±
. (1.96)

The center-of-mass position is

xµ
c (τ) =

1

π

& π

0

dσXµ = xµ + l2sp
µτ (1.97)

and the center-of-mass momentum is

pµc (τ) = T

& π

0

dσẊµ = pµ. (1.98)

Dirichlet-Dirichlet (DD) boundary condition

In the study of Dp-brane, we may also encounter the Dirichlet-Dirichlet (DD)
boundary, for which two ends of the string are fixed in spacetime.

Consider

∂τX
µ =

l2s
2
(p̃µ + pµ) +

ls
2

1

k ∕=0

(α̃µ
ke

−ikσ+

+ αµ
ke

−ikσ−
) (1.99)

Imposing the Dirichlet boundary condition at σ = 0, we have

pµ = −p̃µ, αµ
k = −α̃µ

k . (1.100)

Then for σ = π, the boundary condition imply that k ∈ Z. Finally, the mode
expansion for DD boundary condition is (where we have redefinee αµ

n as α̃µ
n

and wµ = p̃µ)

Xµ = xµ + l2sw
µσ + ls

1

n ∕=0

1

n
αµ
ne

−inτ sin(nσ). (1.101)

Notice that this expansion is completely different with the NN case and
closed string case in its physical essence. One importance thing is no mo-
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mentum is allowed for DD open string, only winding is allowed. Therefore,
we have chosen the notation wµ in our mode expansion. The two ends are
fixed at Xµ(σ = 0) = xµ and Xµ(σ = π) = xµ + l2sw

µπ, wee see that wµ

characterize the distance between two ends of the string.

Exercise 1.4. Calculate the center-of-mass position and center-of-mass mo-
mentum of the DD open string.

Dirichlet-Neumann (DN) boundary condition

The final case we will discuss is a combination of the Dirichlet and Neu-
mann (DN) boundary conditions. The Dirichlet boundary condition at σ = 0
implies that

pµ = −p̃µ, αµ
k = −α̃µ

k . (1.102)

Thus we have

Xµ = xµ + l2s p̃
µσ +

ils
2

1

k ∕=0

1

k
(αµ

ke
−ikσ−

+ α̃µ
ke

−ikσ+

), (1.103)

and its σ-derivative is

∂σX
µ = l2s p̃

µ + ils
1

k ∕=0

α̃µ
ke

−ikτ cos(kσ). (1.104)

Imposing the Neumann boundary condition at σ = π, we obtain

l2s p̃
µ + ils

1

k ∕=0

α̃µ
ke

−ikτ cos(kπ) = 0, (1.105)

which implies that

p̃µ = pµ = 0, k ∈ Z+
1

2
. (1.106)

Therefore the mode expansion for DN boundary condition is (we redefine αµ
k

as α̃µ
k)

Xµ = xµ + ls
1

k∈Z+ 1
2

1

k
αµ
ke

−ikτ sin(kσ). (1.107)

This is an open string with an given direction, the σ = 0 end is fixed in
spacetime and the σ = π end is free to move in spacetime.

Exercise 1.5. Calculate the center-of-mass position and center-of-mass mo-
mentum of the DN open string.



Chapter 2

Quantization of the bosonic string

The career of a young theoretical
physicist consists of treating the
harmonic oscillator in
ever-increasing levels of
abstraction.

Sidney Coleman

In this chapter, we will discuss how to quantize the string.

§ 2.1 Canonical quantization

Our goal is to quantize D scalar fields Xµ governed by the Polyakov action
in conformal gauge. The equation of motion is ∂−∂+X

µ = 0. The constraint
from the vanishing of energy-momentum tensor is

T−− = T++ = 0, (2.1)

or equivalent, they are expressed by classical Virasoro generators

Ln = L̃n = 0, (2.2)

sicne Ln and L̃n are Fourier expansion coefficient of the T−− and T++.
The canonical way for quantization is promoting the classical fields into

operators and by replacing the Poisson brackets into quantum brackets ac-
cording to

[·, ·]PB → −i[·, ·]. (2.3)

Thus, for fields Xµ and its conjugate momentum Pµ we have

29
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[Xµ(τ,σ), Xν(τ,σ′)] = [Pµ(τ,σ),Pν(τ,σ′)] = 0, (2.4)

[Xµ(τ,σ),Pν(τ,σ′)] = ηµνδ(σ − σ′). (2.5)

As we will see, this kind of quantization scheme makes the Lorentz invariance
manifest, but there will be some states with negative norm.

Using the mode expansion of Xµ, we can also promote xµ, pµ and αµ
n and

α̃µ
n into operators. From the commutation relation of Xµ and Pν , we obtain

the commutation relations (for closed string)1

[αµ
m,αν

n] = [α̃µ
m, α̃ν

n] = mηµνδm+n,0, (2.6)

[α̃µ
m,αν

n] = 0, m, n ∈ Z, (2.7)

and

[xµ, xν ] = [pµ, pν ] = 0, [xµ, pν ] = iηµν , (2.8)

[xµ, α̃ν
n] = [pµ, α̃ν

n] = 0 = [xµ,αν
n] = [pµ,αν

n], n ∕= 0. (2.9)

For open string commutation relations remain the same, but α̃µ
n modes do not

appear. The commutation relations for xµ and pν are expected for operators
governing the position and momentum of center of mass of the string. The αµ

n

and α̃ν
n are in fact harmonic oscillator creation and and annihilation operator

in disguise. Let’s now try to make it more clear.

2.1.1 Fock space

The mode expansion coefficient operator αµ
n and α̃ν

n can be regarded as the
creation and annihilation operator in the following way

an =
αn√
n
, a†n =

α−n√
n
, for n > 0. (2.10)

Here we have omitted the µ label. For closed string, α̃µ
n part can be trans-

lated into creation and annihilation operators in the same way. From the
commutation relation of αµ

n, we see that [an, a
†
m] = δm,n which is our famil-

iar commutator for creation and annihilation operator.
With the creation and annihilation operators in hand, we can build the

Fock space by giving the vacuum state of string |0〉. Notice that the creation
operator do not contain the zero mode coefficient αµ

0 = lsp
µ/2, thus the

the vacuum state should carry another quantum number kµ which is the
eigenvalue of pµ, we denote it as |0; kµ〉. The annihilation operator acting on
vacuum state get zero value

1 We can also obtain the commutation relation by replacing the classical Poisson
brackets into quantum bracket [·, ·]PB → −i[·, ·] from their classical commutation
relation.
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αµ
n|0; kµ〉 = α̃µ

n|0; kµ〉 = 0, for n > 0. (2.11)

The zero mode coefficient part is given equivalently by the momentum oper-
ator

pµ|0; kµ〉 = kµ|0; kµ〉. (2.12)

The Fock space can then be built by acting with creation operator αµ
n and

α̃ν
m with n < 0. Each state in Fock space is an excited state of the string.

The generic states are of the form

(α†
−m1

)n1 · · · (α†
−mq

)nq |0; kµ〉, for m1, · · · ,mq > 0. (2.13)

As in quantum field theory, we introduce the normal order of a series of
product of αm1 · · ·αmq as : αm1 · · ·αmq : for which the creation operators are
on the left of the annihilation operators, and we make a further convention
that all subscripts are arranged in order from small to large. For example

: α5α−1α3α0α−3 := α−3α−1α0α3α5. (2.14)

The normal order will be useful later in expression of physical operators using
mode coefficients.

Ghost: negative-norm states

The Fock space we constructed has a problem, viz., some states in the space
have negative norm. The reason is that the commutation relation involving
the time component filed X0 has a minus sign:

[α0
m, (α0

n)
†] = [α̃0

m, (α̃0
n)

†] = η00mδm,n = −mδm,n, (2.15)

note that we have used (α0
n)

† = α0
−n and (α̃0

n)
† = α̃0

−n.
Consider the norm of states α0

−m|0; kµ〉 with m > 0,

‖α0
−m|0; kµ〉‖ = 〈0; kµ|α0

mα0
−m|0; kµ〉 = 〈0; kµ|(−m+ α0

−mα0
m)|0; kµ〉 = −m.

(2.16)
In fact, whenever there are odd number of timelike oscillator excited, the
norm of the states is negative. The states with negative norm is referred to
as ghost . Physically speaking, to make the sense of the theory, we must make
sure that ghosts can not be produced by any physical process.

2.1.2 Virasoro algebra and physical states

Now let us consider how to add the constraint Ln = L̃n = 0. It’s sufficient to
make the constraint that, for arbitrary physical states |ψ〉 and |φ〉, we have
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〈ψ|Ln|φ〉 = 0, 〈ψ|L̃n|φ〉 = 0, for n > 0. (2.17)

where n > 0 is set because of L−n = L†
n, n < 0 conditions are guaranteed by

n > 0 condition. In summary, for physical states |φ〉, we have

Ln|φ〉 = L̃n|φ〉 = 0. (2.18)

Now the question is how to define operators Ln and L̃n and what constraint
we should impose for L0. We can naively guess that by directly promoting
the αn in the classical expression of Ln

Ln =
1

2

∞1

m=−∞
αn−m · αm. (2.19)

Unfortunately, this does not work. As in quantum field theory, we must
normal-order the product of operators, thus the Virasoro generator can be
defined as

Ln =
1

2

∞1

m=−∞
: αn−m · αm :, L̃n =

1

2

∞1

m=−∞
: α̃n−m · α̃m : . (2.20)

Exercise 2.1. Prove that for the normal-ordering definition of Ln and L̃n,
we have L−n = L†

n and L̃−n = L̃†
n.

From the definition, for n ∕= 0, terms in expression of Ln are always com-
mutes, [αµ

m,αν
n−m] = mηµνδn,0 = 0, we can change the order arbitrarily.

Thus normal order definition works for our goal to set constraint Ln = 0.
However, for n = 0, the order ambiguity issue arises,

L0 =
1

2

+∞1

m=∞
: α−m · αm :=

1

2
(α0)

2 +

+∞1

m=1

α−m · αm (2.21)

where [αµ
m,αν

−m] = mηµνηm−m,0, they do not always commute, when we
try to promote classical expression of L0 into the quantum normal-ordering
express, some extra constant term arise. This results in the fact that to make
the quantum analogue of classical constraint L0 = 0, we must introduce a
parameter a, such that for physical state |φ〉,

(L0 − a)|φ〉 = 0. (2.22)

Similar for L̃0.
In summary, the physical state conditions for closed string read
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(L0 − a) |φ〉 =
,
L̃0 − a

-
|φ〉 = 0 (2.23)

Lm>0|φ〉 = L̃m>0|φ〉 = 0 (2.24)

For open string, L̃n part vanishes. The condition (2.23) is often called
mass-shell condition.

Mass-shell condition

As we have discussed for classical string mode expansion, L0 and L̃0 play
important roles in determining the spectrum of string. Recall that αµ

0 =
α̃µ
0 = lsp

µ/2, we see that

−M2 = pµpµ =
4

l2s
α0 · α0 =

4

l2s
α̃0 · α̃0

=
2

α′α0 · α0 =
2

α′ α̃0 · α̃0. (2.25)

Using the expression of L0 and L̃0 and the physical state condition L0−a = 0
and L̃0 − a = 0, we see that

M2 =
4

α′ (−a+

∞1

m=1

α−m · αm) =
4

α′ (−a+

∞1

m=1

α̃−m · α̃m). (2.26)

We can introduce the level operator (or number operator, although there is a√
m difference in each term of the summation from the true number operator)

N =

∞1

m=1

α−m · αm, Ñ =

∞1

m=1

α̃−m · α̃m. (2.27)

The condition that for physical state N = Ñ is known as level matching
condition. The mass operator and level operator are related by

M2 =
4

α′ (N − a) =
4

α′ (Ñ − a). (2.28)

Virasoro algebra

The quantum expression of Virasoro generators satisfy the commutation re-
lation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.29)
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where c = D is the spacetime dimension. This can be proved using the
commutation relation of αµ

n. Similar for L̃n. Here c is called central charge,
which is absent in classical commutation relations. The existence the central
charge is a quantum effect, the process to map classical Virasoro algebra
to quantum Virasoro algebra is known as central extension, which will be
discussed later in the chapter of discussion of conformal field theory in this
note.

Exercise 2.2. Prove the quantum Virasoro comutation relations (2.29) .

Lorentz invariance

2.1.3 Ghost elimination

The ghost state is unphysical, we must eliminate ghost states from our theory.
As we will see later, by properly choosing a and central charge c = D, we
can get rid of these negative-norm states. In general, physical states can have,
positive, negative or zero norms. Similar for unphysical state. We will consider
a sequence of zero-norm states in the Fock space we constructed before, and
figure out in what values of a and c = D, these zero-norm states become
physical. As shown in Figure 2.1, when the left ribbon region of unphysical
zero-norm states and the right ribbon region of physical zero-norm states
coincide, the negative norm state region vanishes. Notice that this is just a
non-rigorous but inspiring argument, a more rigorous argument is presented
in the next section using light-cone quantization where you will see that to
preserve the conformal symmetry of the theory, we must take special value of
a and D. To achieve our goal here, we need introduce the notion of spurious
state.

Spurious state

A state |ψ〉 in Fock space is called spurious if it satisfy the mass-shell condition
(here for simplicity, we consider the open string case, the closed string case
is similar)

(L0 − a) |ψ〉 = 0, (2.30)

and is orthogonal to all physical states |φ〉, viz.,

〈ψ|φ〉 = 0, ∀ physical state |φ〉. (2.31)

The set of all spurious states can be regarded as vacuum state, since vacuum
state is orthogonal to all physical state.

Let us define a series of states |χn〉 by
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Fig. 2.1 Illustration of spurious state argument of the critical dimension D = 26
and a = 1. Different regions represent different sets of states.

(L0 − a+ n) |χn〉 = 0. (2.32)

Thus |χn〉 is the eigenstate of L0 with eigenvalue a−n. For each |χn〉, there is
a corresponding spurious state |ψn〉 = L−n|χn〉 with n > 0, it’s obvious that
for arbitrary physical state |φ〉, 〈φ|ψn〉 = 0. For the mass-shell condition, we
have

(L0 − a)|ψn〉 =(L0L−n|χn〉 − aL−n|χn〉)
= (([L0, L−n] + L−nL0)|χn〉 − aL−n|χn〉)
=nL−n|χn〉+ L−n(a− n)|χn〉 − aL−n|χn〉 = 0. (2.33)

Consider an eigenstate |h〉 of L0, L0|h〉 = h|h〉, the state L−n|h〉 is also an
eigenstate of L0 with eigenvalue h+ n.

L0L−n|h〉 =([L0, L−n] + L−nL0)|h〉
=(n+ h)L−n|h〉. (2.34)

Thus L−n raises the eigenvalue of L0 by amount of n, this implies that for
|χm〉, Ln|χm〉 is in fact the state |χm−n〉. Since L0L−n|χm〉 = (a − (m −
n))L−n|χm〉.

In general, a spurious state is of the form

|ψ〉 =
∞1

n=1

cn|ψn〉 =
∞1

n=1

cnL−n|χn〉, (2.35)

where cn are coefficients. Notice that

L−3 = [L−1, L−2], L−4 = [L−1, L−3]/2, · · · (2.36)

all L−n with n > 2 can be expressed as a combination of L−1 and L−2

with equal total level (the number of L−1 in product is k and the number
L−2 in product is l, the level is defined as k + 2l). For example, L−3 =
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L−1L−2 − L−2L−1, each term in summation if of total level 3. Recall that
L−1|χn〉 = |χn−1〉 and L−2|χn〉 = |χn−2〉,

L−3|χ3〉 =(L−1L−2 − L−2L−1)|χ3〉
=L−1|χ1〉+ L−2|χ2〉
=|ψ1〉+ |ψ2〉. (2.37)

Similarly, for all n > 2, we have

|ψn〉 = L−n|χn〉 ∼ |ψ1〉+ |ψ2〉. (2.38)

Therefore, a general spurious state is of the form (omitting the overall phase
factor)

|ψ〉 = γ|ψ1〉+ |ψ2〉 = γL−1|χ1〉+L−2|χ2〉 = γL−1L−1|χ2〉+L−2|χ2〉. (2.39)

If a spurious state |ψ〉 is physical, then it must be orthogonal to itself, thus
its norm is zero. We now determined the value of a and c = D by requiring
the spurious state to be physical, this seems very artificial, but at this stage,
we can only treat at this level. This rigorous discussion is given in the chapter
of conformal field theory.

Determining a = 1 and c = D = 26

To determine normal ordering constant a, consider the spurious state |ψ1〉 =
L−1|χ1〉. Demanding that |ψ1〉 is physical means

0 = Lm|ψ1〉 = LmL−1|χ1〉, (2.40)

the mass-shell condition is automatically satisfied since ψ1 is a spurious state.
Consider the L1 case, L1L−1

0 = L1|ψ1〉 = L1L−1|χ1〉 = (2L0 + L−1L1)|χ1〉
= 2(a− 1)|χ1〉 (2.41)

which implies that a = 1. Notice that here we have used the condition
Lm|χ1〉 = 0 for m > 0.

In order to determine the value of central charge c = D, let us consider
the general spurious state in equation (2.39),

|ψ〉 = γL−1L−1|χ2〉+ L2|χ2〉. (2.42)

We have L0|χ2〉 = (a − 2)|χ2〉 and Lm|χ2〉 = 0 for m > 0. If |ψ〉 is physical,
we have

Lm|ψ〉 = 0, ∀m > 0. (2.43)
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In particular, for L1 we have

[L1, L−2 + γL−1L−1] = (3 + 2γ)L−1 + 4γL−1L0, (2.44)

which implies that

0 = L1|ψ〉 =L1(L−2 + γL−1L−1)|χ2〉
=[L1, L−2 + γL−1L−1]|χ2〉+ (L−2 + γL−1L−1)L1|χ2〉
=((3 + 2γ)L−1 + 4γL−1L0) |χ2〉.
=(3 + 2γ)L−1|χ2〉+ 4γL−1(a− 2)|χ2〉
=(3− 2γ)|χ2〉, (2.45)

where we have used a = 1. Thus, to ensure |ψ〉 a physical state, we must have
γ = 2/3. We now have a state

|ψ〉 = (L−2 +
2

3
L−1L−1)|χ2〉, (2.46)

the higher level physical state condition still need to be added. Let us con-
sider, in particular L2|ψ〉 = 0.

0 =L2|ψ〉 = L2(L−2 +
2

3
L−1L−1)|χ2〉

=[L2, L−2 +
2

3
L−1L−1]|χ2〉+ (L−2 +

2

3
L−1L−1)L2|χ2〉

=[L2, L−2 +
2

3
L−1L−1]|χ2〉

=(−13 +
c

2
)|χ2〉. (2.47)

This implies c = D = 26.

§ 2.2 Light-cone gauge quantization

Let us now introduce another approach to quantizing the bosonic string,
known as light-cone gauge quantization. Recall that the Polyakov action has
three gauge symmetries, two local diffeomorphism symmetries and one Weyl
symmetry. Using these symmetries, we can set the metric as

hαβ = ηαβ (2.48)

by choosing the appropriate gauge, i.e.,

hαβ
σ̃(σ)∈Diff−→ e2φ(σ)ηαβ

g∈Weyl−→ ηαβ . (2.49)
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However, the gauge transformations which give the above flat metric are
not unique. Typical examples are the local diffeomorphisms (in light-cone
coordinates)

σ+ → σ̃+(σ+), σ− → σ̃−(σ−). (2.50)

Both functions only involve one variable. You can check that, under this
transformation, the metric transforms as

ηαβ = e2φ(σ)ηαβ . (2.51)

Then using the Weyl rescaling symmetry, we obtain the flat metric. This
means that we have not completely fix the gauge by choosing the flat metric,
there are still some gauge symmetries surviving, these gauge symmetries can
be regarded as a measure-zero subset of all gauge symmetries. These surviving
gauge symmetries can be fixed by the light-cone gauge.

As we known from gauge field theory that local gauge symmetry can be
used to reduce the unphysical degrees of freedom. Let’s now count how many
degrees of freedom we have. The equation of motion of Xµ tells us that
Xµ = Xµ

L(σ
+) + Xµ

R(σ
−) where Xµ

L and Xµ
R are two arbitrary functions,

thus we have 2D degrees of freedom in total. Now two constraints T−− =
(∂−X

µ
R)

2 = 0 and T++ = (∂+X
µ
L)

2 = 0 reduce the degrees of freedom into
2(D − 1). The gauge transformations (2.50) reduce 2 unphysical degrees of
freedom, finally we have D−2 independent left movers and D−2 independent
right movers. As you will see, which can be chosen as i = 1, · · · , D − 2, and
refer to them as transverse fields.

2.2.1 Light-cone gauge

In counterpoint to the world-sheet light-cone coordinates, we introduce the
following spacetime ligh-tcone coordinates

X± =

'
1

2
(X0 ±XD−1). (2.52)

The spacetime indices then become µ = +,−, 1, · · · , D − 2.
In light-cone coordinates, the the spacetime displacement becomes

ds2 = η̃µνdX
µdXν = −dX+dX− − dX1dX+ +

D−21

i=1

dXidXi. (2.53)

This means that the light-cone metric reads
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η̃µν = η̃µν =

3

444445

0 −1
−1 0

1
. . .

1

6

777778
, (2.54)

the indices are raised and lowered with X+ = −X− and X− = −X+

and Xi = Xi. The inner product of two spacetime vectors reads V · U =
η̃µνV

µUν = −V +U− − U+V − + V iUi. Hereinafter, we take the convention
that the contraction of space indices in light-cone coordinates are running
through 1 to D − 2.

The equation of motion and the vanishing of energy-momentum tensor in
light-cone coordinates (for indices +,−) read

∂+∂−X
± = 0; (2.55)

T++ = −2∂+X
+∂+X

− + ∂+X
i∂+Xi = 0, (2.56)

T−− = −2∂−X
+∂−X

− + ∂−X
i∂−Xi = 0. (2.57)

Let us first look at the solution of X+ = X+
L (σ+) + X+

R (σ−), for closed
string, in the Fourier expansion form,

X+
R (σ−) =

1

2
x+ +

1

2
l2s p

+σ− +
ils
2

1

n ∕=0

1

n
α+
n e

−2inσ−
, (2.58)

X+
L (σ+) =

1

2
x+ +

1

2
l2s p

+σ+ +
ils
2

1

n ∕=0

1

n
α̃+
n e

−2inσ+

. (2.59)

Using the freedom of reparameterization invariance, we can change the vari-
able σ± → σ̃±(σ±) such that the oscillator terms vanish in these new vari-
ables, this is actually a choice of gauge, known as light-cone gauge. Dropping
the tilde symbol of these new variables, we obtain that

X+
R (σ−) =

1

2
x+ +

1

2
l2s p

+σ−, X+
L (σ+) =

1

2
x+ +

1

2
l2s p

+σ+. (2.60)

In summary, the light-cone gauge reads

X+ = x+ + l2s p
+τ. (2.61)

This means that, in light-cone gauge, X+ is a timelike coordinates. Notice
that this choice picks out a particular space coordinate and a particular time
coordinate, thus the Lorentz symmetry is not manifest anymore. And it’s
obvious that when a massless string moving in X− direction with p+ = 0,
this choice does not work anymore, we can choose the light-cone gauge for
X−.



40 2.2. LIGHT-CONE GAUGE QUANTIZATION

Solving X− of closed string

Now let us solve X− for closed string, we take the usual ansatz solution
X− = X−

L (σ+) +X−
R (σ−). Consider the constraint (2.56),

2∂+X
−∂+X

+ = ∂+X
i∂+Xi, (2.62)

using the light-cone gauge (2.61), we obtain

∂+X
−
L =

1

l2s p
+
∂+X

i∂+Xi. (2.63)

Similarly, from constraint (2.57), we obtain

∂−X
−
R =

1

l2s p
+
∂−X

i∂−Xi. (2.64)

From these equations we see that the X− is determined in terms of other
spatial fields Xi with i = 1, · · · , D − 2.

Now let us consider the mode expansion of X− and Xi of closed string,
here for convenience we write down the explicit form for X−

X−
R (σ−) =

1

2
x− +

1

2
l2s p

−σ− +
ils
2

1

n ∕=0

1

n
α−
n e

−2inσ−
, (2.65)

X−
L (σ+) =

1

2
x− +

1

2
l2s p

−σ+ +
ils
2

1

n ∕=0

1

n
α̃−
n e

−2inσ+

. (2.66)

See Eqs. (1.62) and (1.63) for Xi
R and Xi

L.
By introducing α−

0 = α̃−
0 = lsp

−/2, the light-cone derivatives are

∂−X
−
R (σ−) = ls

1

n∈Z
α−
n e

−2inσ−
, (2.67)

∂+X
−
L (σ+) = ls

1

n∈Z
α̃−
n e

−2inσ+

. (2.68)

Substituting them and the light-cone derivatives of Xi into Eqs. (2.63) and
(2.64) and comparing two sides, we obtain

closed string:

+
α−
n = 1

lsp+

2
m∈Z

2D−2
i=1 αi

n−mαi
m,

α̃−
n = 1

lsp+

2
m∈Z

2D−2
i=1 α̃i

n−mα̃i
m.

(2.69)

Note that hereinafter, whenever necessary, we will write the summation over
i = 1, · · · , D − 2 explicitly. We thus see that light-cone gauge (2.61) renders
the constraints of the vanishing of energy momentum tensor trivial.
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Let us now consider the mass formula for the string, this corresponds to
the the special case of Eq. (2.69), namely, α−

0 = α̃−
0 = lsp

−/2 and αi
0 = α̃i

0 =
lsp

i/2. From the expression of α−
0 and α̃−

0 , we obtain

p+p− =
2

l2s

1

m∈Z

D−21

i=1

αi
−mαi

m =
1

l2s

1

m∈Z

D−21

i=1

α̃i
−mα̃i

m (2.70)

From these equations, we obtain the classical mass formula (level matching
condition)

M2 = 2p+p− −
D−21

i=1

pipi

=
4

l2s

1

m∈Z

D−21

i=1

αi
−mαi

m − 4

l2s

D−21

i=1

αi
0α

i
0

=
4

l2s

1

m∈Z

D−21

i=1

α̃i
−mα̃i

m − 4

l2s

D−21

i=1

α̃i
0α̃

i
0. (2.71)

After simplification, we have (recall l2s = 2α′, and here we have neglected the
ordering ambiguity)

closed string: M2 =
4

α′

1

m>0

D−21

i=1

αi
−mαi

m =
4

α′

1

m>0

D−21

i=1

α̃i
−mα̃i

m. (2.72)

The difference between this and the old mass foumula is that, here the con-
traction of spacetime indices only runs through i = 1, · · · , D − 2. As before,
we can introduce the level

N =

D−21

i=1

∞1

n=1

αi
−nα

i
n (2.73)

which, in quantized form, is the level operator of the string.

Solving X− for open string

Let’s now solve X− for open string with Neuman-Neuman boundary condi-
tion. Since the procedure is completely the same as we have done for closed
string, we only present the results here. The mode expansion of X− for open
string is

X− = x− + l2s p
−τ + ils

1

n ∕=0

1

n
α−
n e

−inτ cosnσ. (2.74)
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Using the constraint of energy momentum tensor, we obtain

open string: α−
n =

1

2lsp+

1

m∈Z

D−21

i=1

αi
n−mαi

m. (2.75)

Then using the zero mode α±
0 = lsp

±, αi
0 = lsp

i for open string, the mass
formula is obtained

open string: M2 =
1

α′

1

m>0

D−21

i=1

αi
−mαi

m. (2.76)

2.2.2 Light-cone gauge quantization

We have now obtained the most general solution of the open and closed string,
which is described in terms of transverse oscillator modes αi

n (together with
α̃i
n for closed string), and the zero modes which describing the center of mass

and momentum of the string, x±, p±, xi and pi, the oscillator modes for
X+ are zero, and the oscillator modes for X− are determined by transverse
oscillator modes. To quantize, we need impose the commutations relations.
For transverse modes, it is obvious (actually it is not)

9
xi, pj

:
= iδij ,

9
αi
n,α

j
m

:
=

9
α̃i
n, α̃

j
m

:
= nδijδn+m,0.

(2.77)

The special case is the commutators for x± and p±. We give some not rigorous
argument, since

x± =
x0 ± xD−1

√
2

, p± =
p0 ± pD−1

√
2

, (2.78)

using the commutator of [x0, p0] = −i and [xD−1, pD−1] = i, we obtain

[x−, p+] = −i, [x+, p−] = −i. (2.79)

Here the derivation is based on the commutator for the field Xµ and Pν , we
must stress that this is not rigorous.

From the classical expression of α−
n in Eq. (2.75), when promoting it into an

operator, there will be ordering ambiguity for α−
0 because of the commutators

[αi
n,α

j
−n] = nηij and [α̃i

n, α̃
j
−n] = nηij . As for covariant quantization, we

introduce a constant a to write the operators in normal order.
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closed string:

"
$

%
α−
n = 2

lsp+

,
1
2

2
m∈Z

2D−2
i=1 αi

n−mαi
m − aδn,0

-
,

α̃−
n = 2

lsp+

,
1
2

2
m∈Z

2D−2
i=1 α̃i

n−mα̃i
m − aδn,0

-
.

(2.80)

For the open string, the left movers vanish, all other commutators remain
the same as the closed string case, thus we have

open string: α−
n =

1

lsp+

;
1

2

1

m∈Z

D−21

i=1

αi
n−mαi

m − aδn,0

<
. (2.81)

Now, let’s consider the Fock space, the vacuum state is |0; kµ〉 such that

pµ|0; kµ〉 = kµ|0; kµ〉, αi
n|0; p〉 = α̃i

n|0; p〉 = 0 for n > 0. (2.82)

The Fock space is built by acting creation operators αi
−n and αi

−n with n > 0
over the vacuum state. Note that in light-cone formalism, the index i only
runs through 1, · · · , D−2, this makes the Fock space positive definite. There
is no worry about the ghost.

2.2.3 Mass-shell condition

Consider the zero mode operators α−
0 = lsp

−/2 = α̃−
0 , combining this with

the fact that they are determined by the the transverse modes, we obtain
the mass-shell condition, which is an extra constraint needed to be added by
hand as operator equations.

Closed string case

For closed string, from its mass formula, the mass square operator also suffers
from the ordering ambiguity, thus the mass square operator is

M2 =
4

α′

;
D−21

i=1

1

n>0

αi
−nα

i
n − a

<
=

4

α′

;
D−21

i=1

1

n>0

α̃i
−nα̃

i
n − a

<
. (2.83)

Because of its usefulness, we introduce the level operator

N =
1

n>0

D−21

i=1

αi
−nα

i
n , Ñ =

1

n>0

D−21

i=1

α̃i
−nα̃

i
n. (2.84)

Using the level operators, we have the mass-shell condition
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M2 =
4

α′ (N − a) =
4

α′ (Ñ − a). (2.85)

Equivalently N = Ñ over the physical states, this is known as the level
matching condition for closed string. Note that the name of level operator
origins from the fact that they are actually not the number operator since
the factor 1/

√
n difference between the annihilation and creation operators.

Determining a and D —We have give a non-rigorous derivation of the
fact that normal ordering constant a = 1 and critical spacetime dimension
D = 26. Now we are going to present a rigorous one based on the Ramanujan
sum of positive integers

+∞1

n=1

n = − 1

12
.

Which is first intuited by Ramanujan. The rigorous derivation of the formula
based on the zeta function regularization. But before that, we given a heuris-
tic, dirty and interesting derivation, which is often used in derivation of the
Casimir energy in one-dimensional systems.

Firstly we introduce an infinitesimal variable ε ≪ 1, we can replace the
divergent sum over positive integers by the express

∞1

n=1

n −→
∞1

n=1

ne−εn = − ∂

∂ε

∞1

n=1

e−εn

= − ∂

∂ε

eε

(1− e−ε)

=
eε

(1− e−ε)2
=

1

4 sinh2 ε/2

Using the fact that 4 sinh2 ε
2 ≃ 4( ε2 + 1

6 (
ε
2 )

3 + · · · )2 = ε2(1 + 1
24ε

2 + · · · ), we
obtain that

∞1

n=1

ne−εn ≃ 1

ε2
− 1

12
+O(

1

ε2
).

Since 1/ε2 term diverges as ε → 0, it should be renormalized away. After
renormalization, we obtain the famous Ramanujan sum of positive integers.

The more rigorous way to derive the Ramanujan sum of positive integers
is the zeta function regularization. The Riemann zeta function is defined as

ζ(s) =

+∞1

n=1

n−s, (2.86)

for complex number s such that Re(s) > 1. The zeta function has a unique
analytic continuation to s = −1, for which ζ(−1) = −1/12.

Now consider the naive classical mass formula
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M2 =
8

l2s

1

2

1

m ∕=0

D−21

i=1

αi
−mαi

m =
8

l2s

1

2

1

m ∕=0

D−21

i=1

α̃i
−mα̃i

m. (2.87)

Using the commutator [αi
n,α

j
−n] = nηij , for mass formula, we have

1

2

1

m<0

9
αi
mαi

−m −m(D − 2)
:
+
1

2

1

m>0

αi
−mαi

m =
1

m>0

αi
−mαi

m+
D − 2

2

1

m>0

m.

The left mover modes obey the similar equation. In summary we have

M2 =
4

α′

)
N − D − 2

24

*
=

4

α′

)
Ñ − D − 2

24

*
, (2.88)

which means that the normal ordering constant can be set as

a =
D − 2

24
.

As we will see in the next chapter, to make the light-cone description of
bosonic string theory Lorentz invariant, we must have a = 1. This immedi-
ately implies that D = 26

Open string case

The mass-shell condition for open string is similar as the closed string,

M2 =
1

α′

;
D−21

i=1

1

n>0

αi
−nα

i
n − a

<
=

1

α′ (N − a). (2.89)

The derivation of the relationship a = D−2
24 is complete the same as we

have done for closed string. As you will see from the spectrum analysis, for
both of closed and open strings, the critical values are a = 1 and D = 26.
This reflects an important fact: the open string and closed string are not
different theories, they are both different states inside the same theory.

§ 2.3 String spectrum and Poincaré invariance

2.3.1 Closed string spectrum

Let’s now consider the excited states of the closed string in light-cone gauge.
We will prove that the critical spacetime dimension is D = 26 in this section
as we have promised.
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Recall that the Wigner classification Poincaré group tells us that the par-
ticle type (with the same mass, spin, etc.) are classified by the the unitary
irreducible representations of the Poincaré group. For string particle, things
are completely the same.

The level matching condition N = Ñ tells us that each excited state must
be created by the left mover modes and right mover modes simultaneously,
since

[N, α̃j
n] = 0, ∀n, j; [Ñ ,αj

n] = 0, ∀n, j. (2.90)

If an excited state is created by right mover modes only |ψ〉 = αj1
−n1

· · ·αjq
−nq

|0; kµ〉,
the level matching condition is broken: N |ψ〉 ∕= 0 but Ñ |ψ〉 = 0. Similarly for
the right movers. You can prove using, e.g., math induction, that

Nαj1
−n1

· · ·αjq
−nq

|0; kµ〉 = (n1 + · · ·+ nq)α
j1
−n1

· · ·αjq
−nq

|0; kµ〉, (2.91)

Ñ α̃j1
−n1

· · · α̃jq
−nq

|0; kµ〉 = (n1 + · · ·+ nq)α̃
j1
−n1

· · · α̃jq
−nq

|0; kµ〉. (2.92)

Exercise 2.3. Prove the identities (2.91) and (2.92).

From the above discussion, we know that a typical excited state with N =
Ñ = n must have the form

αi1
−n1

· · ·αiq
−nq

α̃j1
−m1

· · · α̃jl
−ml

|0; kµ〉 (2.93)

whith n1 + · · ·+ nq = n = m1 + · · ·+ml. Let us take a close look at the first
three mass levels separately.

Vacuum N = Ñ = 0: tachyon

The first excited states N = Ñ = 1

The first excited state is
αi
−1α̃

j
−1|0; kµ〉, (2.94)

where i, j = 1, · · · , D − 2, thus there are (D − 2)2 such states. Each of these
states has the mass

M2 =
4

α′ (1−
D − 2

24
). (2.95)

The problem is that both of αi
−1, α̃

j
−1 are SO(D−2) ⊂ SO(1, D−1) vectors, it

seems that they can not form a representation of Lorentz group SO(1, D−1).
Suppose that these states are massive, i.e., M2 ∕= 0. After going to the

rest frame of the particle by setting pµ = (p, 0, · · · , 0), we can consider how
the internal degrees of freedom transform under the group SO(D − 1), thus
they must form a representation of SO(D− 1). However, as we have pointed
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out, there are (D− 2)2 such first excited states, they can never form a repre-
sentation of SO(D− 1) and therefore can not form a massive representation
of D-dimensional Poincaré group.

Now suppose the these states are massless, i.e., M2 = 0. There is no rest
frame for massless particle, thus we choose pµ = (p, 0, · · · , 0, p). In this situ-
ation, the particles form a representation of SO(D− 2), this can be achieved
using our first excited states. Notice that the massive particle has more inter-
nal degrees of freedom is a general phenomenon, e.g., our familiar D = 4, the
photon (spin=1) are massless, it has two polarization states but for massive
particle with spin 1, there are three polarization states.

In short, we see that if we want the first excited states form a representation
of Lorentz group, they must be massless, from (2.95), we see that

a =
D − 2

24
= 1,⇔ D = 26. (2.96)

This completes the proof that for bosonic string, we have critical normal
ordering constant a = 1 and critical spacetimes dimension D = 26.

The massless first excited states form a 24 ⊗ 24 representation of group
SO(24), this representation can decompose into three irreducible representa-
tions

traceless symmetric ⊕ antisymmetric ⊕ singlet (=trace). (2.97)

To each of these irreducible representations, we assign a massless field in
spacetime such that the string oscillation can be identified with the quantum
of there fields. The corresponding fields are

Gµν(X), Bµν(X), Φ(X). (2.98)

The first one is the spacetime metric, which we will discuss in detail later.
The second is call Kalb-Ramond field, it is a 2-form. The last one is called
dilation. These fields are common in string theory, we will discuss them in
the following chapters.

The second excited states N = Ñ = 2

For N = Ñ = 2, the left mover sector are created by

αi
−2, αi

−1α
j
−1 (2.99)

there are D − 2 such αi
−2 and (D − 2)(D − 1)/2 such αi

−1α
j
−1 since they are

symmetric with respect to the indices i, j. The same is true for left mover
sector.
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Now, we still have to worry about Lorentz invariance. Since the excitations
are massive, they must form a representation of SO(D − 1). We have fixed
a = 1 and D = 26 to preserve the Lorentz symmetry in first excited states.
For N = Ñ = 2, we need to check if this guarantee the Lorentz symmetry.
Fortunately, the answer is yes. Since there are D − 2 + (D − 2)(D − 1)/2 =
(D − 2)(D − 1)/2 which fit nicely a symmetric traceless second-rank tensor
representation of SO(D − 1).

2.3.2 Opens string spectrum

For open string, things are completely the same.

2.3.3 Counting the number of excited states

We have see that for a given mass level, N = n (for open string), there are
many degenerate states, let’s denote the degeneracy by dn and see how to
count dn.

Given a complex number w and the level operator N , we can introduce
the operator wN . By taking the trace in the |n, in〉 (where n denotes the mass
level and in = 1, · · · , dn denotes the internal degrees of freedom), we define

G(w) = TrwN =

+∞1

n=0

dn1

in=1

〈n, in|wN |n, in〉 =
+∞1

n=0

dnw
n. (2.100)

Thus we can calculate the degeneracy from

dn =
1

2πi

=
G(w)

wn+1
dw, (2.101)

where the contour is a small circle about the origin.
On the other hand, we can also calculate the trace from

TrωN = Trω
!24

i=1

!∞
m=1 αi

−mαi
m

=

24>

i=1

∞>

m=1

T̃rωαi
−mαi

m

(2.102)

Notice that here we use T̃rωαi
−mαi

m to mean the trace over states generated
by (αi

−m)l with l = 0, · · · ,∞. Simple calculation implies that

T̃rωαi
−mαi

m = 1 + wn + w2n + · · · = 1

1− wn
. (2.103)
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In summary, we have

G(w) = TrwN =

∞>

n=1

(1− wn)−24 = f(w)−24, (2.104)

where

f(w) =

∞>

n=1

(1− wn) (2.105)

is known as classical partition function.





Chapter 3

Conformal field theory

In this chapter, we will discuss the basics about the conformal field theory,
it has applications in many different areas of physics, most notably in string
theory, the critical phenomena in statistical physics and so on. The conformal
field theory, in spite of its name, has a very different methodology with the
usual approach for quantum field theory. For usual quantum field theory, we
start form the action for the fields and then quantize it using the covariant
quantization or path integral quantization. In conformal field theory, in spirit
of bootstrap approach, we can defined the a field theory without referring to
the actions but just by exploring the symmetries of the theory. Here we
will review some basic result mainly about two-dimensional conformal field
theory. Although we won’t talk too much about the higher dimensional case,
we want to stress that, because of it application in AdS/CFT correspondence,
this is a hotspot during recent years.

§ 3.1 Conformal transformation

We first discuss generalities of the conformal field theory, and the appli-
cations to string theory will be presented later. Consider a d-dimensional
flat space Rp,q (where d = p + q) with the flat metric gµν = ηµν :=
diag(1, · · · , 1,−1, · · · ,−1) of signature (p, q), viz, there are p 1’s and q (−1)’s
in the metric, the corresponding line element is ds2 = gµνdx

µdxν . Note that
here in this section we assume the indices µ = 1, · · · , d. The space equipped
with the metric matrix which may have negative or zero eigenvalues is called
semi-Riemannian manifold, such as 4-dimensional Minkowski space, which is
also the main object of physical research. Here we use the Einstein’s sum
convention that repeated index is summed over, gµν should be understood as
the general metric which is a symmetric non-degenerate matrix and ηµν the
constant metric diag(1, · · · , 1,−1, · · · ,−1). It’s also worth mentioning that
we will take the convention that dx is used as the informal notion of infinites-

51
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imal displacement and dxµ is the rigorous notion basis one-form dual to the
tangent vector ∂µ = ∂

∂xµ . Notation dxµdxν should be understood as tensor
product dxµ ⊗ dxνthus dxµdxν ∕= dxνdxµ (in many physical literatures, the
authors tend to neglect the difference, but it should be clear what meaning
is used in the context).

Now let us see what is the conformal transformation, we will first give a
more rigorous and more abstract mathematical definition, and the details of
the definition will be discussed in aspects.

Definition 3.1 (Conformal transformation). Let (M, g) and
(M′, g′) be two semi-Riemannian manifolds, a differentiable map ϕ :
U → V from open set U ⊆ M to open set V ⊆ M′ is called confor-
mal transformation if, there is a positive funtion Ω : U → R+ such
that ϕ∗g′ = Ω2g, where ϕ∗ is the pull-back map. More precisely, let
x′α(x) = ϕα(x), we have

(ϕ∗g′)µν(x) = g′αβ(x
′(x))

∂x′α

∂xµ

∂x′β

∂xν
= Ω2(x)gµν(x). (3.1)

The positive function Ω(x) is called the scale factor, some authors also
using eΛ(x) rather than Ω2(x) to denote the scale factor.

The conformal transformation preserve angles. Note that, if the scale factor
Ω(x) = 1, the transformation preserve the metric (preserve distance thus
also preserve angle), it’s a Poincaé transformation. A conformal field theory
is a field theory which is invariant under conformal transformations. Since
dilatation is a conformal transformation, the invariance of the theory under
dilatation means that the physics of the theory is the same at all length
scales.

Depending on the physical system we are studying, there are two different
explanation of the conformation symmetry. In statistical physics, the back-
ground metric is fixed, conformal transformation is a real physical transforma-
tion, conformal symmetry is a physical symmetry, But when the background
metric is dynamical, as in string theory, the conformal transformation is only
a mathematical redundancy of our description of the physical world, thus
the conformal symmetry is a gauge symmetry (not a physical symmetry). In
these lectures, as we will discuss, conformal symmetry is a gauge symmetry
of our theory.
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3.1.1 Infinitesimal analysis

As in quantum mechanics, the infinitesimal generators of conformal group
Conf(Rp,q) can be determined by considering the infinitesimal coordinate
transformation xµ → x′µ = xµ + εµ(x) where εµ(x) << 1. The conformal
invariance will impose some corresponding constraints on εµ. Under such a
infinitesimal transformation, the metric changes as

ηαβ
x′α

xµ

x′β

xν
= ηµν + (∂µεν + ∂νεµ). (3.2)

To make the transformation conformal, ∂µεν + ∂νεµ must be proportional to
ηµν , viz.,

∂µεν + ∂νεµ = F (x)ηµν . (3.3)

Tracing both sides of Eq. (3.3) with ηµν , we find that F (x) = 2∂µεµ/d =
2∂ · ε/d. We then obtain the first crucial formula

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν . (3.4)

The scale factor can be read off as Ω2(x) = 1 + 2
d (∂ · ε).

It follows from Eq. (3.4) that εµ(x) is at most quadratic in xν . To argue
this, let now derive some other useful expressions from Eq. (3.4). First, acting
on both sides of Eq. (3.4) with ∂ν and summing over ν, we obtain that

∂µ(∂
νεν) + (∂ν∂ν)εµ =

2

d
∂µ(∂ · ε).

Using the notation of d’Alembert operator □ = ∂ν∂ν , we have

∂µ(∂ · ε) +□εµ =
2

d
∂µ(∂ · ε).

Furthermore, by taking derivative ∂ν of the above expression, we have

∂µ∂ν(∂ · ε) +□∂νεµ =
2

d
∂µ∂ν(∂ · ε).

Then by exchanging the indices µ ↔ ν, and adding the resulted expression
with the above expression, we arrive at the equation

2∂µ∂ν(∂ · ε) +□(∂µεν + ∂νεµ) =
4

d
∂µ∂ν(∂ · ε).

Substituting Eq. (3.4) into the above expression, we obtain another important
expression

(ηµν□+ (d− 2)∂µ∂ν)(∂ · ε) = 0. (3.5)
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Contracting the expression with ηµν gives

(d− 1)□(∂ · ε) = 0. (3.6)

Combining Eqs. (3.5) and (3.6), we see that, for d > 2 (this is necessary, the
d = 2 case will be discussed later), ∂µ∂ν(∂ · ε) = 0. Therefore (∂ · ε) must
be at most linear in x, but this is insufficient to argue that ε(x) is at most
quadratic in x. To get the final result, let us now take derivative ∂ρ of Eq.
(3.2),

∂ρ∂µεν + ∂ρ∂νεµ =
2

d
ηµν∂ρ(∂ · ε).

By permuting the indices, we have

∂µ∂νερ + ∂µ∂ρεν =
2

d
ηνρ∂µ(∂ · ε), ∂ν∂ρεµ + ∂ν∂µερ =

2

d
ηρµ∂ν(∂ · ε).

Subtracting the first expression from the last two in the above three expres-
sions, we obtain that

∂µ∂νερ =
1

d
(ηρµ∂ν + ηνρ∂µ − ηµν∂ρ)(∂ · ε) (3.7)

Since (∂ · ε) is at most linear in x, then the right hand side of the above
expression is a constant, which implies that ε is at most quadratic in x.

In summary, we have the following result:

Proposition 3.1 (Infinitesimal conformal transformation for
d > 2). For d > 2, the infinitesimal conformal transformation εµ(x)
is at most quadratic in xν , more precisely,

εµ(x) = aµ + bµνx
ν + cµνρx

νxρ, (3.8)

where coefficients aµ, bµν , c
µ
νρ are infinitesimal constants and cµνρ is

symmetric in indices ν and ρ.

3.1.2 Conformal group for d > 2

Now, let us take a close look at infinitesimal conformal transformations
εµ(x) = aµ + bµνx

ν + cµνρx
νxρ. Each term will be studied individually

and their corresponding generators will be given. Recall that for a gen-
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erator Gα and infinitesimal parameters aα, the field φ(x) transform as
φ′(x) = e−iaαGαφ(x) ≃ (I − iaαGα)φ(x).

Translation

The constant term aµ corresponds to infinitesimal translation xµ → x′µ =
xµ+aµ. The generator of this translation is the familiar momentum operator
Pµ = −i∂µ. There are d independent translation generators in total.

Lorentz transformation

For the term bµνx
ν which is linear in x, by inserting it into Eq. (3.4), we obtain

bµν + bνµ =
2

d
bααηµν . (3.9)

From this expression, we see that bµν can be split into a symmetric and
antisymmetric part as

bµν = ληµν + ωµν .

The antisymmetric part corresponds to the Lorentz transformation xµ →
x′µ = (δµν+ωµ

ν)x
ν . The generator of the Lorentz transformations are angular

momentum operator Jµν = i(xµ∂ν−xν∂µ). There are d(d−1)/2 independent
generators of the Lorentz transformations.

Dilation

For the symmetric part of the linear term bµνx
ν , the corresponding transfor-

mation is xµ → x′µ = (δµν + λδµν)x
ν = (1 + λ)xµ. This is the dilation (or,

scale transformation), the corresponding generator is D = −ixµ∂µ. Note that
from the expression (3.9), we have λ = bαα/d.

Special conformal transformation

Now let us focus on a special kind of conformal transformation, the so-called
special conformal transformation, which is a result of the term cµνρx

νxρ. It
is easily calculated that (∂ · ε) = 2cµµρx

ρ and ∂µ∂νερ = 2cρµν , substituting
them into Eq. (3.7), we obtain

cρµν =
1

d
(ηνρ∂µ + ηρµ∂ν − ηµν∂ρ)c

α
αβx

β =
1

d
(ηνρc

α
αµ + ηρµc

α
αν − ηµνc

α
αρ).

Let bµ = 1
dc

α
αµ, we have



56 3.1. CONFORMAL TRANSFORMATION

cρµν = ηνρbµ + ηρµbν − ηµνbρ.

By permuting the indices, we have

cµνρ = ηµρbν + ηµνbρ − ηνρbµ. (3.10)

This implies that the special conformal transformation is of the form

xµ → x′µ = xµ + 2(x · b)xµ − x2bµ. (3.11)

The corresponding generator is Kµ = −i(2xµx
ν∂ν − x2∂µ), there are d inde-

pendent generators of the special conformal transformations.
Now let us consider the finite special conformal transformation,

x′µ =
xµ − x2bµ

1− 2b · x+ b2x2
, (3.12)

which after expansion to first order of infinitesimal bµ is consistent with the
infinitesimal special conformal transformation (3.11). It’s easily checked that
the finite special conformal transformation can be rewritten as

x′µ

x′2 =
xµ

x2
− bµ. (3.13)

From this expression, we see that the finite special conformal transformation
can be understood as an inversion of xµ (which is a reflection with respect
to the unit circle), followed by a translation bµ. And we also see that finite
special conformal transformation is not globally defined, since for given finite
bµ, when 1−2b ·x+ b2x2 = 0, the corresponding point xµ = bµ/b2 is mapped
into infinity. To remedy this deficiency, we need to consider the so-called
compactification of the space Rp,q, for which the infinity is added as a point
to make the finite special conformal transformation globally defined.

3.1.2.1 The commutation relation of generators

To summarize, we have in total

d+
1

2
d(d− 1) + 1 + d =

1

2
(d+ 1)(d+ 2) (3.14)

generators. The different conformal transformations and their corresponding
generators are listed in Table 3.1.

The commutation relation for these generators are,
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[D,Pµ] = iPµ, (3.15)

[D,Kµ] = −iKµ, (3.16)

[Kµ, Pν ] = 2i (ηµνD − Jµν) (3.17)

[Kµ, Jνρ] = i (ηµνKρ − ηµρKν) (3.18)

[Pµ, Jνρ] = i (ηµνPρ − ηµρPν) (3.19)

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ) (3.20)

the proof is left as an exercise.

3.1.2.2 The d > 2 conformal group

From the above discussion, we see that the conformal group Conf(p, q) which
consists of all conformal transformations has (d + 1)(d + 2)/2 independent
generators. Observe the commutation relation of these generators, we can
introduce the operator Lmn = Lm,n with m,n = −1, 0, · · · , d

Lµ,ν = Jµν , L−1,0 = D, (3.21)

L0,µ =
1

2
(Pµ +Kµ), L−1,µ =

1

2
(Pµ −Kµ), (3.22)

and Lm,n = −Ln,m. We can check that the commutation relation is

[Lmn, Lkl] = i(ηmlLnk + ηnkLml − ηmkLnl − ηnlLmk). (3.23)

Note that for Euclidean space Rd,0 the metic is chosen as ηmn = diag(−1, 1, · · · , 1),
this commutation relation corresponds to Lie algebra so(d+1, 1). For Minkowski
space Rd−1,1, the metic is chosen as ηmn = diag(−1,−1, 1, · · · , 1), the com-
mutation relation corresponds to the Lie algebra so(d, 2).

Table 3.1 Infinitesimal conformal transformation in d > 2.

Transformations Scale factors Ω2(x) Generators

Translation x′µ = xµ + aµ 1 Pµ = −i∂µ
Lorentz rotation x′µ = Λµ

νx
ν 1 Jµν = i(xµ∂ν − xν∂µ)

Dilation x′µ = (1 + λ)xµ (1 + λ)2 D = −ixµ∂µ
SCT x′µ = xµ−2(x ·b)xµ+x2bµ (1− 2(b · x) + b2x2)2 Kµ = −i(2xµxν∂ν − x2∂µ)
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Theorem 3.1. For the space Rp,q with d = p + q > 2, the conformal
group is Conf(p, q) = SO(p+ 1, q + 1).

Remark 3.1. Rigorously speaking, the conformal group Conf(p, q) is defined
as the connected component containing identity of the group of all conformal
transformations of the conformal compactification of Rp,q. The group of all
conformal transformations is O(p+1, q+1)/{±1}. The conformal groups are:
(i) if −1 is not in the connected component containing 1 of O(p + 1, q + 1),
we have Conf(p, q) ≃ SO(p+1, q+1), (ii) if −1 is contained in the connected
component containing 1 of O(p+1, q+1), we have Conf(p, q) ≃ SO(p+1, q+
1)/{±1}. But physicists usually say that the conformal group of d = p+q > 2
case is SO(p+ 1, q + 1).

3.1.3 Conformal group for d = 2

3.1.3.1 Complexification of coordinates

For d = 2, recall for the infinitesimal transformation εµ to be conformal, we
have the constraint

∂µεν + ∂νεµ =
2

d
(∂ · ε)ηµν . (3.24)

Let us first consider the Euclidean space R2,0 with metric ηµν = diga(+1,+1),
and the Minkowski space R1,1 with metric ηµν = diga(−1,+1) will be dis-
cussed later. In Euclidean metric, the conformal constraint reads

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1, (3.25)

which are nothing but the familiar Cauchy-Riemann equations.
Now we can introduce the complexification of variables in the following

way, the complex coordinates are

z = x1 + ix2, ∂z =
1

2
(∂x − i∂y) (3.26)

z̄ = x1 − ix2, ∂z̄ =
1

2
(∂x + i∂y) (3.27)

and the infinitesimal conformal transformation are

ε = ε1 + iε2, ε̄ = ε1 + iε2. (3.28)
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The Cauchy-Riemann equation for εµ indicates that a holomorphic function
f(z) = z+ε(z) gives rise to an infinitesimal 2-dimensional conformal transfor-
mation1, and the inverse direction is also true, any (orientation-preserving)
conformal transformation is a holomorphic function. Under the transforma-
tion z → f(z), the metric transforms as

ds2 = dzdz̄ → ds′
2
=

df

dz

df̄

dz̄
dzdz̄, Ω(z, z̄) = |df/dz|2. (3.29)

Note that after complexification, two variable are regarded as independent,
we thus have R2,0 → C2. After we complete the calculation, we finally need to
add the condition that the complex conjugate z∗ of z is equal to the variable
z̄. This is a frequently used trick in conformal field theory.

3.1.3.2 Witt algebra and d = 2 conformal group

Witt algebra.—From the above discussion, we see that an infinitesimal
conformal transformation ε(z) is a holomorphic function locally in some open
set U . But we call still assume that there are some singularities outside the
open set, thus we need to consider the Laurent expansion of ε(z).

Around the point z = 0, assume the Laurent expansion of ε(z) is

ε(z) =
1

n∈Z
εn(−zn+1), ε̄(z̄) =

1

n∈Z
ε̄n(−z̄n+1), (3.30)

where εn and ε̄n are expansion coefficients. The generators corresponding the
the transformation are

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄. (3.31)

Since n ∈ Z, there are infinite independent generators. It’s easily checked
that the generators satisfy the following commutation relations

[lm, ln] = (m− n)lm+n, (3.32)

[l̄m, l̄n] = (m− n)l̄m+n, (3.33)

[lm, l̄n] = 0. (3.34)

1 Rigorously speaking, holomorphic functions give rise to orientation-preserving con-
formal transformations, since antiholomorphic function can also give rise to a confor-
mal transformation but not orientation-preserving. Here our infinitesimal analysis is
around the identity transformation, z → z, which is holomorphic, thus, the antiholo-
morphic case doesn’t appear.
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There commutators are familiar to us, as we have met them before in
the discussion of Virasoro generators Lm for string mode expansions. Since
[lm, l̄n] = 0, they forms two independent algebras W and W̄, both are known
as Witt algebras. The full algebra corresponding to infinitesimal conformal
transformations is thus A = W ⊕ W̄. Note that here, we see that the algebra
for z and z̄ are independent, this reflects in the fact that we treat z and z̄
independently.

Global conformal transformation.—The above discussion concentrate
on the locally defined infinitesimal conformal transformation, now we move
to consider the global conformation transformation. From the definition ln =
−(zn+1)∂z, we see that it’s singular for n + 1 ≤ −1 at z = 0. The usual
way we learn from complex analysis to overcome this kind of singularity is
to consider the compactification of R2,0 ≃ C as S2,0 := C ∪ {∞}, known as
Riemann sphere. On the Riemann sphere, a new point need to be stressed,
∞, by changing of variable w = 1/z, we find that

ln = w−n+1∂w. (3.35)

We see that this is non-singular at w = 0 (i.e., z = ∞) only when −n+1 ≥ 0.
Similar result hold for z̄ generators. Thus we see that ln and l̄n are non-
singular on Riemann sphere only when n = −1, 0,+1.

Theorem 3.2. The globally defined conformal transformation for Rie-
mann sphere S2,0 is generated by {l−1, l0, l1}. For two copies S2,0×S2,0
of the compactification C × C, the globally defined conformal transfor-
mations are generated by {l−1, l0, l1} ∪ {l̄−1, l̄0, l̄1}.

This is a good news for us, since they look much simpler. We now try to
obtain some intuition about these generators. In fact, we have

• l−1 = −∂z and l̄−1 = −∂z̄ generates translations on the complex plane
z → z + b and z̄ → z̄ + b̄. This is obvious from their definition.

• l1 = −z2∂z and l̄−1 = −z̄2∂z̄ generates special conformal transformations
on complex plane. This can easily seen from the changing of the variable
w = 1/z, the l1 = ∂w, it is the generator of translation for w → w + c,
thus the generator of special conformal transformation z → z

cz+1 .
• l0 = −z∂z generates the transformation z → az for some a ∈ C, similar

result holds for l̄0 = −z̄∂z̄. Since we have

l0 = −1

2
r∂r +

i

2
∂θ, l̄0 = −1

2
r∂r −

i

2
∂θ, (3.36)

by rearranging them into

l0 + l̄0 = −r∂r, and i
.
l0 − l̄0

/
= −∂θ. (3.37)
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thus we see that l0 + l̄0 is the generator of dilation and i
.
l0 − l̄0

/
is the

generator of rotation.

From complex analysis we known translation, special conformal transform,
dilation and rotation on complex on complex plane form the Möbius group

PSL(2,C) = SL(2,C)/{±I}, (3.38)

where SL(2,C) = {z → az+b
cz+d |a, b, c, d ∈ C, ad−bc ∕= 0}. Thus we come to the

conclusion that the conformal group of Riemann sphere is the the Möbius
group PSL(2,C).

3.1.3.3 Virasoro algebra

To introduce the notion of Virasoro algebra as a central extension of the Witt
algebra. We first give a discussion of the central extension g̃ = g⊕C of a Lie
algebra g. The commutation relations of the central extension are

[x̃, ỹ]g̃ = [x, y]g + c p(x, y), (3.39)

[x̃, c]g̃ = 0, (3.40)

[c, c]g̃ = 0, (3.41)

where c ∈ C is called central charge and p : g× g → C is a bilinear function.
Consider the central extension of the Witt algebra where the generators lm
are now replaced with Lm. The commutation relation now becomes

[Lm, Ln] = (m− n)Lm+n + c p(m,n). (3.42)

Similar result holds for l̄m → L̄m. The function p(m,n) can be determined
as follows.

Step 1: From the definition of Lie bracket, [Lm, ln] = −[Ln, Lm], we have
p(m,n) = −p(n,m).

Step 2: We can redefine the generators as

?Ln = Ln +
cp(n, 0)

n
for n ∕= 0, and ?L0 = L0 +

cp(1,−1)

2
. (3.43)

From the commutators

[?Ln, ?L0] = n?Ln, (3.44)

[?L1, ?L−1] = 2?L0, (3.45)

we see that for these generators, p(n, 0) = 0 = p(0, n) and p(1,−1) = 0 =
p(−1, 1).

Step 3: Now we consider the following particular Jacobi identity:
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[[Lm, Ln] , L0] + [[Ln, L0] , Lm] + [[L0, Lm] , Ln] = 0 (3.46)

From which and using the fact that p(n, 0) = 0 for all n and p(m,n) =
−p(n,m), we obtain (m+ n)p(m,n) = 0. For m = −n, p(m,n) must vanish.
To summarize, the only non-vanishing terms are p(n,−n) for |n| ≥ 2.

Step 4: To determine p(n,−n), we can calculate the following Jacobi iden-
tity

[[L−n+1, Ln], L−1] + [[Ln, L−1], L−n+1] + [[L−1, L−n+1], Ln] = 0. (3.47)

From which we obtain

(−2n+1)c p(1,−1)+(n+1)c p(n−1,−n+1)+(n−2)c p(−n, n) = 0, (3.48)

this implies a recursion relation p(n,−n) = n+1
n−2p(n−1,−n+1). If we choose

p(2,−2) = 1/2 (this choice is because of a special choice of central charge c,
which will be discuss later), we obtain that p(n,−n) = n(n2 − 1)/12.

In summary, we have introduce the Virasoro algebra as central extension
of Witt algebra.

Definition 3.2. The Virasoro algebra Virc with central charge c has
the following commutation relations of the generators

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (3.49)

§ 3.2 Energy-momemtum tensor

3.2.1 General energy-momentum tensor

Before we discuss the conformal fields, let’s recall some basics about energy-
momentum tensor for a field theory in Lagrangian formalism. By Noether’s
theorem, for a N -component field φa with a = 1, · · · , N in spacetime xµ with
µ = 0, · · · , D−1, any continuous symmetry transformation has a correspond-
ing conserved charge. Suppose that the Lagrangian is L, and the infinitesimal
symmetry transformation is

+
δxµ = x′

µ − xµ = xµ +X β
µ ωβ ,

δφa = Ψ β
a ωβ ,

(3.50)
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which is characterized by a set of infinitesimal parameters ωβ , the spacetime
transformation matrix X β

µ , and the field transformation matrix Ψ β
a , we can

define the energy-momentum tensor as

Tµν =
∂L

∂∂µφa
∂νφa − gµνL. (3.51)

Notice that here field component index a is also in contraction. The variation
of the action is zero, since it is a symmetry of the theory

δS =

&
∂µ

)
∂L

∂∂µφa
δφa − Tµνδxν

*
dxD = 0. (3.52)

From this, we can introduce the Noether current, which is a conserved current

Jµβ = TµνX β
ν − ∂L

∂∂µφa
Ψ β
a . (3.53)

The conservation law of Noether current reads

∂µJ
µβ = 0. (3.54)

And finally, the conserved charge corresponding to the symmetry transfor-
mation is

Qβ(x0) =

&

space

JoβdxD−1. (3.55)

3.2.2 Traceless energy-momentum tensor

In conformal field theories, one of the most crucial properties of the energy-
momentum tensor is that it is traceless:

T µ
µ = 0 (3.56)

For a scalar field φ(x), under conformal transformation xµ → x′
µ = xµ + εµ,

we have φ′(x′) = φ(x), thus the field transformation matrix Ψβ = 0. The
Noether current can be written as

Jµβ = Tµνεν . (3.57)

From the conservation law of the current, we obtain that

0 = ∂µ(T
µνεν) = (∂µT

µν)εν + Tµν∂µεν (3.58)

For the special case of conformal transformation, translation with a constant
vector ε = const, we obtain ∂µT

µν = 0 from above result. Together with this
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and the fact Tµν is symmetric and for conformal transformation εµ we have
∂µεν + ∂νεµ = 2

dηµν∂ · ε, the above result further implies that

0 = (∂µT
µν)εν + Tµν∂µεν

= 0 +
1

2
Tµν(∂µεν + ∂νεµ)

=
1

2
Tµν 2

d
ηµν∂ · ε. (3.59)

From the arbitrariness of εµ, we see that Tµνηµν = T µ
µ = 0.

3.2.3 Two-dimensional Euclidean case

From the above discussion, we see that the energy momentum tensor of theory
obey conformal symmetry must satisfy

∂µT
µν = 0 and T µ

µ = 0. (3.60)

According to the expression of the energy-momentum tensor in Eq. 3.51, we
see that it is a rank-2 coavariant tensor, under the coordinates transformation
xµ → x̃µ, Tµν transforms as

T̃αβ =
∂xµ

∂x̃α

∂xν

∂x̃β
Tµν . (3.61)

Let us consider the complexification of coordinates (x0, x1) = (−iτ,σ)
with Euclidean metric ηµν = diag(1, 1),

z = x0 + ix1 = −i(τ − σ), z̄ = x0 − ix1 = −i(τ + σ). (3.62)

Thus x0 = (z+ z̄)/2 and x1 = (z− z̄)/2i, from the transformation Eq. (3.61),
we obtain

Tzz =
1

4
(T00 − 2iT01 − T11), (3.63)

Tz̄z̄ =
1

4
(T00 + 2iT01 − T11), (3.64)

Tzz̄ = Tz̄z =
1

4
(T00 + T11). (3.65)

Using the properties of Tµν in Eq. (3.60), the vanishing of the trace now
becomes

Tzz̄ = Tz̄z = 0. (3.66)

Since T00 = −T11, we also have
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Tzz =
1

2
(T00 − iT10), Tz̄z̄ =

1

2
(T00 + iT10). (3.67)

The conservation law now becomes

∂z̄Tzz = 0, ∂zTz̄z̄ = 0. (3.68)

This means that Tzz and Tz̄z̄ are holomorphic and antiholomorphic re-
spectively, we will often used the simplified notations T (z) = Tzz(z) and
T̄ (z̄) = Tz̄z̄(z̄).

§ 3.3 Conformal fields

We now move to discuss the applications of conformal field theory in string
theory. Recall that in the mode expansion of the closed string, we have left
moving modes e−2niσ+

and right moving modes e−2niσ−
. It’s convenient for

us to introduce the Wick rotation

τ → −iτ,

the world-sheet coordinates become (σ0,σ1) = (τ,σ) → (−iτ,σ) = (σ̃0, σ̃1).
If we define w = τ − iσ and w̄ = τ + iσ, which we still refer to as light-cone
coordinates, we see that

σ̃− = σ̃0 − σ̃1 = −iw, (3.69)

σ̃+ = σ̃0 − σ̃1 = −iw̄. (3.70)

Then the closed string mode term can be written as e−2inσ̃+

= (e2w̄)−n and

e−2inσ̃−
= (e2w)−n. To make the expression more compact, we can introduce

a new complex variable

z = e2w = e2(τ−iσ), z̄ = e2w̄ = e2(τ+iσ), (3.71)

Now we see that, after Wick rotation, the periodicity condition of σ is more
clear, since σ is now in the phase part of the complex variables z and z̄.

With the wick rotation, in light-cone coordinates w, w̄, the metric becomes

ds2 = dwdw̄.

From the definition of complex coordinates z, z̄, we see that w = ln z/2, w̄ =
ln z̄/2, thus the metric is

ds2 =
1

2zz̄
dzdz̄.
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Fig. 3.1 Mapping the world-sheet cylinder to the complex plane.

Here, the scaling factor 1/2zz̄ can be removed by a conformal transformation,
and since our theory is a CFT which is invariant under this transformation,
we can rewrite the metric as

ds2 = dzdz̄.

The components of metric in z, z̄ coordinates are ηzz̄ = ηz̄z = 1/2 and ηzz =
ηz̄z̄ = 0.

The motivation for us to introduce this kind of new complex variable is
not just the convenience. We know that the world-sheet of a closed string
is, roughly speaking, a cylinder. By introducing z = e2w = e2(τ−iσ) we con-
formally map the infinite cylinder to the complex plane in order to employ
the power of complex analysis. The time translation τ → τ + a now be-
comes dilation z → e2az and the space translation σ → σ + b now becomes
a rotation z → e−2bz. Quantum mechanically, the generator of time transla-
tion is Hamiltonian and the generator of space translation is the momentum
operator. In the complex coordinates, as we have discussed, the dilation cor-
responds to the Virasoro generators l0 + l0 and the rotation correspond to
i(l0 − l0), thus after quantization (central extension of the algebra), we see
that the Hamiltonian and momentum operators are

H = L0 + L̄0, P = i(L0 − L̄0). (3.72)

This kind of quantization scheme is called radial quantization.

3.3.1 Primary and chiral fields

By now, we are talking about the conformal transformations, but we still do
not have a formal definition of conformal fields. Roughly speaking, conformal
fields are a kinds of fields which transforms under conformal transformations
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in a conformal way. In fact, we will refer to all the local operators in CFT as
fields. Let’s now see some rigorous definitions about the conformal fields.

Definition 3.3. If a field φ(z, z̄) transforms under scalings z → λz
according to

φ(z, z̄) → φ′(z, z̄) = λhλ̄h̄φ(λz, λ̄z̄), (3.73)

then we say that φ(z, z̄) has conformal dimension (h, h̄).
If a field φ(z, z̄) transforms under arbitrary local conformal transfor-

mation z → f(z) according to

φ(z, z̄) → φ′(z, z̄) =

)
∂f

∂z

*h )
∂f̄

∂z̄

*h̄

φ(f(z), f̄(z̄)), (3.74)

then φ(z, z̄) is called a primary field with conformal dimension (h, h̄).
If a field φ(z, z̄) transforms under arbitrary global conformal trans-

formation z → f(z) (where f ∈ PSL(2,C)) according to

φ(z, z̄) → φ′(z, z̄) =

)
∂f

∂z

*h )
∂f̄

∂z̄

*h̄

φ(f(z), f̄(z̄)), (3.75)

then φ(z, z̄) is called a quasi-primary field with conformal dimension
(h, h̄). Fields which are not primary or quasi-primary are called sec-
ondary fields.

If the filed φ(z) only depends on z, it is called chiral (or holomorphic)
fields. Similarly, if field ψ(z̄) only depends on z̄, it is called anti-chiral
(or anti-holomorphic) fields.

From the above definitions, a primary fields is always quasi-primary, since
global conformal group is a subgroup of local conformal group. In a CFT,
there may exist fields not primary, they are named as secondary fields.

For an infinitesimal conformal transformation z → f(z) = z + ε(z) with
|ε| ≪ 1, we have (∂f/∂z)h = 1 + h∂zε(z) + O(ε2), and similarly we have
(∂f̄/∂z̄)h̄ = 1 + h̄∂z̄ ε̄(z̄) +O(ε̄2). The field φ(z, z̄) transforms as

φ(z+ε(z), z̄+ ε̄(z̄)) = φ(z, z̄)+ε(z)∂zφ(z, z̄)+ ε̄(z̄)∂z̄φ(z, z̄)+O(ε2)+O(ε̄2).

Thus from the definition of primary fields, we see that the transformation of
primary fields under infinitesimal conformal transformation is

δε,ε̄φ = φ′(z, z̄)− φ(z, z̄)

=
.
h(∂zε) + h̄(∂z̄ ε̄) + ε∂z + ε̄∂z̄

/
φ(z, z̄) +O(ε2, ε̄2). (3.76)
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§ 3.4 Operator product expansion

3.4.1 Tµν in string mode expansion

Before we give a general discussion of the conformal fields and operator prod-
uct expansion, let’s now take a quick aside to see the energy-momentum
tensor in string mode expansion.

For closed string with the Polyakov action, the mode expansion in complex
coordinates z, z̄ are

Xµ
R(z) =

1

2
xµ − i

4
pµ ln z +

i

2

1

n ∕=0

1

n
αµ
nz

−n (3.77)

Xµ
L(z̄) =

1

2
xµ − i

4
pµ ln z̄ +

i

2

1

n ∕=0

1

n
α̃µ
nz̄

−n, (3.78)

where we have set ls =
√
2α′ = 1. The holomorphic and antiholomorphic

derivatives are

∂zX
µ
R = − i

2

1

n∈Z
αµ
nz

−(n+1), (3.79)

∂z̄X
µ
L = − i

2

1

n∈Z
α̃µ
nz̄

−(n+1). (3.80)

Fig. 3.2 The illustration of the integration for radial ordering product.
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Part II

Superstring theory





Chapter 5

World-sheet supersymmetric strings

The full name of string theory is
really superstring theory. The
‘super’ stands for this feature
called supersymmetry, which,
without getting into any details,
predicts that for every known
particle in the world, there
should be a partner particle, the
so-called supersymmetric partner.

By Brian Greene

§ 5.1 Ramond-Neveu-Schwarz action

In this section, let us discuss the Ramond-Neveu-Schwarz (RNS ) formal-
ism of superstring, where each bosonic fields Xµ(τ,σ) is paired with a
fermionic partner ψµ(τ,σ). The fermionic fields ψµ are two-component Majo-
rana spinors in the world-sheet and Lorentz vectors in D-dimensional space-
time.

The action consists of two parts S = SB + SF , for the bosonic part (in
conformal gauge)

SB = − 1

4πα′

&
d2σ∂αX · ∂αX. (5.1)

In the world-sheet light cone coordinates, it becomes

SB =
1

πα′

&
d2σ∂+X · ∂−X, (5.2)

Notice that we still use d2σ = dτdσ, which is not transformed in light-cone
coordinates. Hereinafter, we will set α′ = 1/2 for convenience.

73
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For the fermionic part, consider the fermionic fields

ψµ =

)
ψµ
−

ψµ
+

*
, (5.3)

for which we will often use capital letters A,B = −,+ to represent the spinor
components, e.g., ψµ

A. Note that ψµ are Majorana fermions, viz., their values
are real Grassmann numbers

{ψµ
A,ψ

ν
B} = 0. (5.4)

To introduce the fermionic action, we first introduce the two-dimensional
Dirac matrices ρα for which

{ρα, ρβ} = 2ηαβ . (5.5)

The Dirac conjugation of the spinor is defined as (we have omitted the space-
time index here)

ψ̄ = ψ†iρ0, (5.6)

since ψ are Majorana spinor, the components are real, ψ† = ψT . We can give
an explicit matrix form as

ρ0 =

)
0 −1
1 0

*
, ρ1 =

)
0 1
1 0

*
. (5.7)

The fermionic action is constructed as a standard Dirac action

SF = − 1

2π

&
dσ2ψ̄µρα∂αψµ. (5.8)

The equation of motion of ψµ is the Dirac equation

ρα∂αψ
µ = 0. (5.9)

Notice that

ρα∂α = 2

)
0 −∂−
∂+ 0

*
, ψ̄ = (iψ+,−iψ−). (5.10)

Therefore, in light-cone coordinates, we have (d2σ remains dτdσ)

SF =
i

π

&
d2σ (ψ− · ∂+ψ− + ψ+ · ∂−∂+) (5.11)

The equations of motion are

∂−ψ
µ
+ = 0, ∂+ψ

µ
− = 0, (5.12)
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which means that ψµ
+ only depends on σ+ and ψµ

− only depends on σ−, they
are left and right movers respectively.

§ 5.2 Global world-sheet supersymmetry

In this section, let’s take a close look at the RNS action, its symmetries and
superspace description. The crucial feature of the RNS action is that it has
a supersymmetry.

5.2.1 Supersymmetry transformation

As discussed in the previous section, the RNS string action is

S =− 1

2π

&
d2σ

.
∂αXµ∂

αXµ + ψ̄µρα∂αψµ

/

=
1

π

&
d2σ [2∂+X · ∂−X + i (ψ− · ∂+ψ− + ψ+ · ∂−∂+)] . (5.13)

The action is invariant under the global supersymmetric transformation

+
δXµ = ε̄ψµ,

δψµ = ρα∂αX
µε,

(5.14)

where ε = (ε−, ε+)
T is an infinitesimal constant Majorana spinor. When

expanded in components, we obtain

"
#$

#%

δXµ = i
.
ε+ψ

µ
− − ε−ψ

µ
+

/
,

δψµ
− = −2∂−X

µε+,

δψµ
+ = 2∂+X

µε−.

(5.15)

Exercise 5.1. Prove that the RNS is invariant under the above supersym-
metry transformations.

5.2.2 Superspace formalism

We have seen that supersymmetry transformation is a symmetry transforma-
tion that relates the bosonic and fermionic fields. However, from the above
formalism, the supersymmetry is not manifest. It turns out to be convenient
to introduce the notion of superspace, viz., we extend the world-sheet co-
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ordinates σα to super world-sheet coordinates (σα, θA) with α = 0, 1 and
A = −,+ by adding the fermionic coordinates θA = θ−, θ+. Here θA forms a
Majorana spinor,

θ =

)
θ−
θ+

*
, (5.16)

i.e., θA = θ−, θ+ are real Grassmann numbers, {θA, θB} = 0 and θ∗A = θA.
Since θ is two-component spinor, the product of order equal or greater that
3 must be zero, e.g., θAθBθC = 0. We will use this fact frequently. Notice
that the degrees of freedom of bosonic coordinates and fermionic coordinates
must be the same, here, they both equal 2. The derivative and integral of
Grassmann number are of the form

∂

∂θA
(a+ bθB) = bδAB , (5.17)

&
dθA(a+ bθB) = bδAB . (5.18)

We will take the convention that dθ2 = dθ+dθ−, thus we have
@
dθ2θ−θ+ = 1.

The matrices ρα for spinor operations are still

ρ0 =

)
0 −1
1 0

*
, ρ1 =

)
0 1
1 0

*
, β = iρ0 =

)
0 −i
i 0

*
. (5.19)

The Dirac conjugation of spinor θ is θ̄ = θTβ. There are several formulae for
arbitrary two spinors ψ1 and ψ2, which may be useful later

ψ̄1ψ2 = ψ̄2ψ1, (5.20)

ψ̄1ρ
αψ2 = −ψ̄2ρ

αψ1, (5.21)

ψ̄1ρ
αρβψ2 = ψ̄2ρ

βραψ1. (5.22)

We left the proof as an exercise. Another useful formula is two-dimensional
Fierz transformation

θAθ̄B = −1

2
δAB θ̄CθC , (5.23)

whose proof is also left as an exercise.

Exercise 5.2. Prove the Equations (5.20)-(5.22) for spinors and the two-
dimensional Fierz transformation Equation (5.23).

Having introduced the superspace, it’s natural to introduce the superfield
Y µ(σα, θA) over the superspace. The most general such function has a series
expansion in θ of the following form

Y µ(σα, θA) = Xµ(σα) + θ̄ψµ(σα) +
1

2
θ̄θBµ(σα), (5.24)
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where Bµ(σα) is an auxiliary field whose inclusion does not change the physi-
cal content of the theory. This field is introduced to make the supersymmetry
manifest at the action level, i.e., off-shell (without use of equation of motion).
Since supersymmetry is a global symmetry, the non-physical field Bµ(σα)
cannot be eliminated by a local symmetry, but by its equation of motion.

The above expansion of field do not contain terms of θ with power more
than two, because that θA are Grassmann numbers, the higher-order term
vanishes automatically. From Equation (5.20), θ̄ψ = ψ̄θ, the terms linear in θ
are equivalent to the terms linear in θ̄. Thus the above expansion are actually
in its most general form.

To construct the action, the super-covariant derivatives need to be intro-
duced,

DA =
∂

∂θ̄A
+ (ραθ)A∂α, D̄A = − ∂

∂θA
− (θ̄ρα)A∂α. (5.25)

With these preparation, the action now takes the form

S =
i

4π

&
dσ2dθ2D̄AY µDAYµ. (5.26)

Here we have

DAY
µ = ψµ

A + θAB
µ + (ραθ)A∂αX

µ − 1

2
θ̄θ(ρα∂αψ

µ)A

D̄AY µ = ψ̄µA +Bµθ̄A − (θ̄ρα)A∂αX
µ +

1

2
θ̄θ(∂αψ̄

µρα)A
(5.27)

Notice that
@
dθ2θ̄θ = −2i, substituting the above expansions into the

action and take integral for the fermionic coordinates, we obtain that

S = − 1

2π

&
dσ2(∂αX · ∂αX + ψ̄µρα∂αψµ −BµB

µ). (5.28)

From which we see that the equation of motion for Bµ is Bµ = 0. Substituting
it into the action, we get the Radmond-Neveu-Schwarz action in the last
section.

Now we are at a position to discuss the supersymmetry transformation.
To this end, we need to introduce the generator of the supersymmetry trans-
formation

QA =
∂

∂θ̄A
− (ραθ)A∂α, Q̄A = − ∂

∂θA
+ (θ̄ρα)A∂α. (5.29)

It can be checked that {QA, DB} = 0.

Exercise 5.3. Prove that {QA, DB} = 0.
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Since we are now consider the global supersymmetry, for constant Grass-
mann number ε, ε̄Q generates the transformation1

+
δθA = [ε̄Q, θA] = εA,

δσα = [ε̄Q,σα] = θ̄ραε.
(5.30)

This is the supersymmetry transformation in superspace. For fields Y µ, we
have

δY µ = Y ′µ (σα, θA)− Y µ (σα, θA)

= δXµ + θ̄δψµ +
1

2
θ̄θδBµ

= [ε̄Q, Y µ] = (ε̄QY µ)

= ε̄A
A

∂

∂θ̄A
− (ραθ)A ∂α

B)
Xµ + θ̄ψµ +

1

2
θ̄θBµ

*

= ε̄A
9
ψµ
A + θAB

µ − (ραθ)A ∂αX
µ − ραABθB θ̄C∂αψ

µ
C

:

= ε̄ψµ + ε̄θBµ − ε̄ραθ∂αX
µ +

1

2
θ̄θε̄ρα∂αψ

µ

= ε̄ψµ + θ̄εBµ + θ̄ραε∂αX
µ +

1

2
θ̄θε̄ρα∂αψ

µ

(5.31)

Comparing the second and the last lines, we obtain that the variation of fields
under supersymmetry transformations.

For the action

S = − 1

2π

&
dσ2(∂αX · ∂αX + ψ̄µρα∂αψµ −BµB

µ), (5.32)

under the supersymmetry transformation

+
δθA = [ε̄Q, θA] = εA,

δσα = [ε̄Q,σα] = θ̄ραε,
(5.33)

the fields transform as

δXµ = ε̄ψµ (5.34)

δψµ = ραε∂αX
µ + εBµ (5.35)

δBµ = ε̄ρα∂αψ
µ. (5.36)

It’s obvious that, by using the equation of motion Bµ = 0, we obtain
the supersymmetry transformation for Ramond-Neveu-Schwarz action. The

1 Recall that the variation over field Φ generated by ε̄Q is the commutator [ε̄Q,Φ].
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advantage of the superspace formalism is that the supersymmetry is manifest
at the action level.

5.2.3 Constraint equations

Let us now consider the conserved current associated with the global sym-
metry of the action. The first one is energy-momentum tensor Tαβ associated
with the translation symmetry, the second one is the supercurrent Jα asso-
ciated with the global world-sheet supersymmetry.

Energy-momentum tensor

We calculate the energy-momentum tensor here using the normal Noether
current method. For Ramond-Neveu-Schwarz action

S = − 1

2π

&
dσ2

.
∂αXµ∂αXµ + ψ̄µρα∂αψµ

/
, (5.37)

consider the translation of world-sheet coordinates δσα = aα, σα → σ′α =
σα + aα, since Xµ is scalar field, X ′µ(σ′) = Xµ(σ), its variation at σ is

δXµ(σ) = −aα∂αX
µ. (5.38)

For the Lorentz vector and spinor ψµ, since we only consider the translation,
we have ψ′µ(σ′) = ψµ(σ) (under Lorentz rotation, it’s no longer true), the
variation of the field is

δψµ(σ) = −aα∂αψ
µ, δψ̄µ(σ) = −aα∂αψ̄

µ. (5.39)

The variation of the action is

δS =− 1

2π

&
d2σ

9
2∂αXµ∂αδXµ + δψ̄µρα∂αψµ + ψ̄µρα∂αδψµ

:

=− 1

2π

&
d2σ

9
−2∂αXµ∂α

.
aβ∂βXµ

/
+ aβ∂αψ̄µρ

α∂βψ
µ

−ψ̄µρα∂α
.
aβ∂βψµ

/:

=
1

2π

&
d2σaβ∂β

.
∂αX · ∂αX + ψ̄µρα∂αψµ

/

=
1

π

&
d2σ∂βJ β (5.40)

Note that for the term δψ̄µρα∂αψµ, recall the fact for spinors ψ̄1ρ
αψ2 =

−ψ̄2ρ
αψ1, we have
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δψ̄µρα∂αψµ = −∂αψ̄µρ
αδψµ = ∂αψ̄µρ

αaβ∂βψ
µ. (5.41)

Similarly, we have

aβ∂αψ̄µρ
α∂βψ

µ − ψ̄µρα∂α
.
aβ∂βψµ

/

=− aβ∂βψ̄
µρα∂αψµ − ψ̄µρα∂α

.
aβ∂βψµ

/

=− aβ∂β
.
ψ̄µρα∂αψµ

/
. (5.42)

From the above calculation, we see that surface term is

J β =
1

2
aβ

.
∂αX · ∂αX + ψ̄µρα∂αψµ

/
, (5.43)

the normalization factor 1/2 is a convention we choose to use, since we have
left 1/π outside the integral2. The corresponding Lagrangian is (note here
1/π is also left outside the integral)

L = −1

2

.
∂αXµ∂αXµ + ψ̄µρα∂αψµ

/
. (5.44)

Now, using the Noether’s theorem, we obtain

aαTαβ =δXµ ∂L
∂ (∂βXµ)

+ δψµ ∂L
∂ (∂βψµ)

− Jβ

=∂βXµa
α∂αX

µ +
1

2
ψ̄µρβa

α∂αψ
µ − aβ

2

9
(∂X)2 + ψ̄µργ∂γψµ

:

=aα∂αX
µ∂βXµ +

1

4
aα

9
ψ̄µρβ∂αψµ + ψ̄µρα∂βψµ

:

+
1

4
aα

9
ψ̄µρβ∂αψµ − ψ̄µρα∂βψµ

:
− aα

ηαβ
2

9
(∂X)2 + ψ̄µργ∂γψµ

:

=aα
A
∂αX

µ∂βXµ +
1

4
ψ̄µρ(α∂β)ψµ − ηαβ

2

.
(∂X)2 + ψ̄µργ∂γψµ

/

−1

4
ψ̄µρ[α∂β]ψµ

B
.

(5.45)
Here, we have adopted the notation (·, ·) for symmetrizing indices, and [·, ·] for
antisymmetrizing indices. The energy-momentum tensor must be symmetric
for indices α,β, thus we drop the antisymmetric term − 1

4 ψ̄
µρ[α∂β]ψµ. To

avoid the cluttering of equations, we will frequently used the notation (∂X)2

to mean ∂αXµ∂αXµ.
Finally we obtain the energy-momentum tensor.

2 This is just for convenient, since we have assumed that both open and closed
string ranges in [0,π]. Different choices of the convention give the different energy-
momentum tensor and supercurrent, they differ with an overall factor.



CHAPTER 5. WORLD-SHEET SUPERSYMMETRIC STRINGS 81

Tαβ = ∂αX
µ∂βXµ +

1

4
ψ̄µρ(α∂β)ψµ − ηαβ

2

.
(∂X)2 + ψ̄µργ∂γψµ

/
. (5.46)

The energy-momentum tensor is traceless if the Dirac equation ρα∂αψ
µ is

used, viz.,
T α
α = 0. (5.47)

This can be derived easily from the formula of energy-momentum tensor by
taking trace, we left it as an exercise.

Exercise 5.4. Prove that the energy-momentum tensor Tαβ is traceless, i.e.,
T α
α = ηαβTαβ = 0.

Since Tαβ is symmetric and traceless, it has only two independent compo-
nents, namely, T01 and T00.

Supercurrent

Now let us consider the supercurrent associated to the supersymmetry trans-
formation

δXµ = ε̄ψµ (5.48)

δψµ = ραε∂αX
µ (5.49)

Similarly as we have done for energy-momentum tensor, the variation of the
action is now

δS = − 1

2π

&
d2σ

9
2∂αXµ∂αδX

µ + δψ̄µρα∂αψµ + ψ̄µρα∂αδψµ

:

= − 1

2π

&
d2σ

9
2∂µXµ∂α (ε̄ψµ)− ∂αψ̄

µραδψµ + ψ̄µρα∂αδψµ

:

= − 1

2π

&
d2σ

9
2∂αψ̄

µ∂αXµε− ∂αψ̄
µραρβ∂βX

µε+ ψ̄µραρβ∂α∂βXµε
:

= − 1

2π

&
d2σ

9
2∂αψ̄

µ∂αXµε+ 2ψ̄µραρβ∂α∂βXµε

−∂αψ̄
µραρβ∂βX

µε− ψ̄µραρβ∂α∂βXµε
:

= − 1

2π

&
d2σ

9
2∂α

.
∂αXµψ̄µε

/
− ∂α

.
ψ̄µραρβ∂βXµε

/:

= − 1

2π

&
d2σ∂α

9
2ψ̄µε∂αXµ − ψ̄µραρβε∂βXµ

:

=
1

π

&
d2σ∂αJ α,

(5.50)
which gives the surface term
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J α = −ψ̄µε∂αXµ +
1

2
ψ̄µραρβε∂βXµ. (5.51)

The Lagrangian is still the one we used for deriving the energy-momentum
tensor, then for the supercurrent Jα, we have

ε̄Jα = δXµ ∂L
∂ (∂αXµ)

+ δψµ ∂L
∂ (∂αψµ)

− J α

= −∂αXµδX
µ − 1

2
ψ̄µρ

αδψµ + ψ̄µε∂αXµ − 1

2
ψ̄µραρβε∂βXµ

= −∂αXµψ̄
µε− 1

2
ψ̄µρ

αρβε∂βX
µ + ψ̄µε∂αXµ − 1

2
ψ̄µραρβε∂βXµ

= −ψ̄µραρβε∂βX
µ

= −ε̄ρβραψµ∂βXµ

(5.52)

Therefore, we see that the supercurrent is

Jα = −ρβραψµ∂βXµ. (5.53)

Since Jα, α = 0, 1 are spinors, you can naively say that there are four
independent components, since each of J0 and J1 gives two real indepen-
dent components. However, you can check that ραρ

βρα = 0, which implies
ραJ

α = 0. From this constraint, we see that there are only two independent
components of Jα.

Constraint equations

We have see that the conserved current Tαβ has two independent compo-
nents and Jα also has two independent components. This must be true in
the present case, since there is a super-conformal symmetry of the action.
The corresponding super-conformal algebra has four independent generators,
the energy-momentum tensor corresponds to two independent bosonic super-
conformal transformations, and supercurrent Jα corresponds to two indepen-
dent fermionic super-conformal transformations.

Let’s now first analyze the energy-momentum tensor. As what we have
done in bosonic string theory, the light-cone coordinates σ± = τ ± σ is used
now. The metric tensor becomes

ηαβ =

)
0 − 1

2
− 1

2 0

*
, ηαβ =

)
0 −2
−2 0

*
, (5.54)

where α,β = +,−. As we have seen before

ρα∂α = 2

)
0 −∂−
∂+ 0

*
= ρ+∂+ + ρ−∂− = −2(ρ−∂+ + ρ+∂−), (5.55)
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where ρ± = ρ0 ± ρ1. Note that ρ± and ρ± are related by light-cone metric,
thus there is a 2 factor.

ρ+ =

)
0 0
2 0

*
, ρ− =

)
0 −2
0 0

*
, ρ+ =

)
0 1
0 0

*
, ρ− =

)
0 0
−1 0

*
. (5.56)

From the expression of Tαβ and using the result given above, we obtain

T++ =∂+X · ∂+X +
1

2
ψ̄µρ+∂+ψµ = ∂+X · ∂+X + i

1

2
ψ+ · ∂+ψ+

T−− =∂−X · ∂−X +
1

2
ψ̄µρ−∂−ψµ = ∂−X · ∂−X + i

1

2
ψ− · ∂−ψ−,

T+− =T−+ = ∂+X · ∂−X +
1

4
ψ̄µ (ρ+∂− + ρ−∂+)ψµ

− η+−
2

9
2η+−∂+X · ∂−X + η+−ψ̄µ (ρ+∂− + ρ−∂+)ψµ

:

=∂+X · ∂−X +
1

4
ψ̄µ (ρ+∂− + ρ−∂+)ψµ

− ∂+X · ∂−X − 1

2
ψ̄µ (ρ+∂− + ρ−∂+)ψ

′
µ

=− 1

4
ψ̄µ (ρ+∂− + ρ−∂+)ψµ = 0 ← EOM of ψµ

(5.57)

Similar as we have seen in bosonic case, the components T+− = T−+ = 0
automatically from the equation of motion. The only two independent com-
ponents are T++ and T−−.

Recall that the equation of motion for fermionic field is ∂−ψ+ = 0 and
∂+ψ− = 0 which means that ψ+ only depends on σ+ and similarly ψ− only
depends on σ−. The bosonic part is familiar to us, ∂+X only depends on σ+.
In summary, we see that T++ only depends on σ+, similar reasoning implies
that T−− only depends on σ−.

Vanishing of antisymmetric term in Tαβ.—In the derivation of energy-
momentum tensor, we say that since Tαβ must be symmetric, thus the an-
tisymmetric term − 1

4 ψ̄
µρ[α∂β]ψµ is dropped, which seems very artificial and

unsatisfactory. Now, let’s prove that it actually vanishes. For α,β = −−; ++,
because of its antisymmetry, it vanishes; for α,β = +−,

ψ̄µρ[+∂−]ψµ = i (ψ−,ψ+) ρ
0 (ρ+∂− − ρ−∂+)

)
ψ−
ψ+

*

= i (ψ−,ψ+)

)
0 −1
1 0

*)
0 ∂−
∂+ 0

*)
ψ−
ψ+

*

= i (−ψ− · ∂+ψ− + ψ+ · ∂−ψ+) = 0 ⇐ EOM

(5.58)

similarly, for α,β = −+ case, they both vanishes as a result of the equation
of motion.

Let us now move to discuss the supercurrent.
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J+ = −ρβρ+ψ
µ∂βXµ

= −ρ+ρ+ψ
µ∂+Xµ − ρ−ρ+ψ

µ∂−Xµ

= 2
.
ρ−ρ+ψ

µ∂+Xµ + ρ2+ψ
µ∂−Xµ

/

= 2ρ−ρ+ψ · ∂+X

= 2

)
0 0
0 −1

*)
ψ−
ψ+

*
· ∂+X

= −2

)
0

ψ+ · ∂+X

*
.

(5.59)

Similarly, we have

J− = −2

)
ψ− · ∂−X

0

*
. (5.60)

We can define the components of the supercurrent spinor as

J+ =

)
0

−j+

*
, J− =

)
−j−
0

*
, (5.61)

therefore, we have j± = 2ψ± · ∂±X. Note that from the equation of motion,
j+ only depends on σ+ and j− only depends on σ−.

Using the fact that T++, j+ are functions of σ+ and T−−, j− are functions
of σ−, it is easy to check that both Tαβ and Jα are conserved as should be.
For examples

∂αTαβ = ∂+T+β + ∂−T−β = −2∂−T+β − 2∂+T−β = 0 (5.62)

for β = −,+ and

∂αjα = ∂+j+ + ∂−j− = −2∂−j+ − 2∂+j− = 0. (5.63)

We stress that all the above equations follow from the equation of motion
of fields. However, the requirement of super-conformal symmetry actually
lead to stronger constraints than these, viz., the vanishing of the energy-
momentum tensor and supercurrent.

T++ = T−− = 0, j+ = j− = 0. (5.64)

Although, we won’t give a derivation here, we want to make some com-
ments about the super-conformal constraints here. The vanishing of energy-
momentum tensor is a result of the absence of the local gravity dynamics,
which is similar as the bosonic case and is relatively easy to understand. For
the absence of supercurrent, we notice that OPE JJ ∼ T , which mean the
OPE of supercurrent with itself is the energy-momentum tensor, this implies
that J = 0 when T = 0.
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§ 5.3 Boundary condition and mode expansion

In this section, we are going to solve the equation of motion for superstrings.
Since the equation of motion for bosonic part is ∂−∂+X

µ = 0, everything
remains the same as what we have done for bosonic string, the details won’t be
repeated here. For the fermionic part, the equations of motion are ∂+ψ

µ
− = 0

and ∂−ψ
µ
+ = 0, or written as Dirac equation ρα∂αψ

µ = 0.
Let’s take a close look at the derivation of the equation of motion for

fermionic fields. The fermionic part of the action is

SF ∼
&

d2σ(ψ−∂+ψ− + ψ+∂−ψ+), (5.65)

where we have omitted the overall constant factor. The variation of the action
is

δSF ∼
&

d2σ (δψ−∂+ψ− + ψ−∂+δψ− + δψ+∂−ψ+ + ψ+∂−δψ+)

=

&
d2σ [δψ−∂+ψ− + ∂+ (ψ−δψ−)− ∂+ψ−δψ−

+δψ+∂−ψ+ + ∂− (ψ+δψ+)− ∂−ψ+δψ+]

=

&
d2σ [∂+ (ψ−δψ−) + ∂− (ψ+δψ+)− 2∂+ψ−δψ− − 2∂−ψ+δψ+] ,

(5.66)

which gives the equations of motion for ψµ
A provided the surface term vanishes

Surface term =

&
d2σ (∂+ (ψ−δψ−) + ∂− (ψ+δψ+))

=
1

2

&
d2σ ((∂τ + ∂σ) (ψ−δψ−) + (∂τ − ∂σ) (ψ+δψ+)) . (5.67)

The vanishing of the surface term is usually determined by the boundary
condition.

Surface term =
1

2

&
dσ

C
ψ−δψ− |fi + ψ+δψ+|fi

D

+
1

2

&
dτ

C
ψ−δψ− |boundary − ψ+δψ+|boundary

D

=
1

2

&
dτ

C
ψ−δψ− |boundary − ψ+δψ+|boundary

D

=
1

2

&
dτ [ (ψ−δψ− − ψ+δψ+)|σ=π − (ψ−δψ− − ψ+δψ+)|σ=0]

(5.68)
where we have used the the value of variation at initial and final time equals
to zero: δψ±|i = 0 and δψ±|f = 0.
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Thus, in order to make the surface vanish, certain boundary conditions for
ψµ
A need to be imposed. Note that this also depends on the type of strings

we are considering. Since we can set σ = 0 part and σ = π part equal to zero
separately, which corresponds to open string; or we can set them equal thus
they can be canceled, which corresponds to closed string.

5.3.1 Open string

For the case of open string, since two ends of the string are independent, the
boundary condition for two ends should be added independently. It’s obvious
that

ψµ
+ = ±ψµ

− (5.69)

at σ = 0,π make the surface term vanish. From the action (5.65), we see that
the overall sign of ψµ

A is just a convention, since when we use −ψµ
A the action

remains the same. Therefore only relative sign at two ends matters, thus we
can make the convention that at σ = 0, we have

ψµ
+|σ=0 = ψµ

−|σ=0. (5.70)

For the σ = π end, there are two possibilities.

• Ramond boundary condition. In this case, the sign of the σ = π end is
chosen as

ψµ
+|σ=π = ψµ

−|σ=π. (5.71)

Ramond boundary condition gives the spacetime fermions, the mode ex-
pansion of ψµ

A in this case is

ψµ
−(σ

−) =
1√
2

1

n∈Z
dµne

−inσ−
(5.72)

ψµ
+(σ

+) =
1√
2

1

n∈Z
dµne

−inσ+

. (5.73)

The expansion coefficients are the same for two expansion is a result of
the boundary condition at σ = 0 (for σ = π, you can check that it is
also true). Since ψµ are Majorana spinor, thus the expansion must be
real, which means that dµ−n = (dµn)

†. The meaning of the statement that
Ramond boundary condition gives the spacetime fermions will become
clear later, in fact, the zero mode (ground state) is fermionic.

• Neveu-Schwarz boundary condition. In this case, the condition for σ = π
end is chosen as

ψµ
+|σ=π = −ψµ

−|σ=π. (5.74)
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The Neveu-Schwarz boundary condition gives the spacetime bosons. The
mode expansion now becomes

ψµ
−(σ

−) =
1√
2

1

r∈Z+1/2

bµr e
−irσ−

, (5.75)

ψµ
+(σ

+) =
1√
2

1

r∈Z+1/2

bµr e
−irσ+

. (5.76)

The statement that Neveu-Schwarz boundary condition gives the space-
time bosons will become clear later.

5.3.2 Closed string

For closed string, to make the surface term (5.68) vanish, we must impose
periodic boundary condition

(ψ−δψ− − ψ+δψ+) |σ=π = (ψ−δψ− − ψ+δψ+) |σ=0. (5.77)

This can be achieved by choosing

ψ−(σ) = ±ψ−(σ + π), ψ+(σ) = ±ψ+(σ + π). (5.78)

The positive sign describe the periodic boundary condition, also known as
Ramond (R) boundary condition; the negative sign describe the anti-periodic
boundary condition, also known as Neveu-Schwarz (NS) boundary condition.

There are two sets of fermionic modes, as in the bosonic case, which we
refer to as left-moving (σ+) and right-moving (σ−) modes. The mode expan-
sions for ψ− for R boundary and NS boundary are

R: ψµ
−(σ

−) =
1

n∈Z
dµne

−2inσ−
, (5.79)

NS: ψµ
−(σ

−) =
1

r∈Z+1/2

bµr e
−2irσ−

. (5.80)

similarly, for ψ+ we have

R: ψµ
+(σ

+) =
1

n∈Z
d̃µne

−2inσ+

, (5.81)

NS: ψµ
+(σ

+) =
1

r∈Z+1/2

b̃µr e
−2irσ+

. (5.82)
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There are four different closed string sectors, R-R, R-NS, NS-R,NS-NS.
The R-R and NS-NS sectors give spacetime bosons and the R-NS and NS-R
sectors give spacetime fermions.

§ 5.4 Canonical quantization

As we have seen in bosonic string case, the canonical quantization works by
promoting mode expansion coefficients to operators, and using the classical
commutation relation to give the commutation relation of the mode expansion
operators. Here, the procedure works completely the same, except that for
fermionic part, the anti-commutation relation should be used.

Since everything of the bosonic part of the RNS string remains the same
as we have discussed in bosonic string theory, we won’t repeated the details
here, but for convenience, we write down the commutation relations here

NN open string: [αµ
m,αν

n] = mδm+n,0η
µν , (5.83)

closed string: [αµ
m,αν

n] = [α̃µ
m, α̃ν

n] = mδm+n,0η
µν . (5.84)

Let’s now focus on the open string with Neumann-Neumann boundary con-
dition.

In order to quantize the theory of fermionic fields, one can introduce canon-
ical anticommutation relations for the fermionic world-sheet fields

{ψµ
A(τ,σ),ψ

ν
B(τ,σ

′)} = πηµνδABδ(σ − σ′). (5.85)

From this, one obtains the following commutation relations for mode expan-
sions

R sector: {dµm, dνn} = ηµνδm+n,0 (5.86)

NS sector: {bµr , bνs} = ηµνδr+s,0 (5.87)

Since the spacetime metric appears at the right hand sides of the commu-
tators, there will also be negative-norm states, just like the bosonic theory.

Exercise 5.5. Derive the commutation relation (5.86) and (5.87) from the
commutation relation of the fields (5.85) using the mode expansion for R
sector and NS sector respectively. Similar as the bosonic case, you may need
to use the Fourier series of the delta function (with period 2π and in the
sense of distribution)

δ (x− a) =
1

2π

+∞1

n=−∞
ein(x−a). (5.88)
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5.4.1 Fock space

For the RNS open superstring, there are two different Fock spaces corre-
sponding to R sector and NS sector respectively. The physical properties of
two sectors are completely different.

For the R sector, the fermionic annihilation operators are dm (m > 0),
and the corresponding creation operators are d−m = d†m (m > 0). The vac-
uum state |0〉R is annihilated by both of bosonic and fermionic annihilation
operators

αm|0; kµ〉R = dm|0; kµ〉R = 0, m > 0. (5.89)

Notice that here kµ represents the freedom form the bosonic zero mode pµ =
αµ
0/ls, viz.,

pµ|0; kµ〉R = kµ|0; kµ〉R. (5.90)

The excited states are obtained by acting the creation operators. We still
need to worry about the zero mode {dµ0 , dν0} = ηµν , this is actually a Clifford
algebra. If we redefine Γµ =

√
2dµ0 which is the generators of the Clifford

algebra, the anticommutator is

{Γµ,Γ ν} = 2ηµν . (5.91)

This means that the ground states of the R sector are degenerate and they
form a representation of the Clifford algebra. We can use the spinor label a
to label these state, |a〉, then we have

dµ0 |a; kµ〉 =
1√
2
Γµ
ba|b; k

µ〉. (5.92)

This indicates that the ground state of the R sector is a spacetime fermion.
Since all the creation operators αµ

−n and dµ−n are spacetime vectors, the ex-
cited states of the R sector are spacetime fermions.

For NS sector, the fermionic annihilation operators are br (r > 0), and the
corresponding creation operators are b−r = b†r (r > 0). Notice that there is no
fermionic zero mode in NS sector. The vacuum state |0; kµ〉NS is annihilated
by both the bosonic and fermionic annihilation operators

αm|0; kµ〉 = br|0; kµ〉 = 0, m, r > 0. (5.93)

Since there is no zero fermionic mode in NS sector, the vacuum is unique,
which is a spacetime boson. Since all creation operators are spacetime vectors,
all excited states in NS sector are spacetime bosons.
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5.4.2 Super-Virasoro algebra

The super-Virasoro generators are coefficients of the mode expansion of the
energy-momentum tensor Tαβ and supercurrent Jα. Recall that in their clas-
sical forms, we have

T++ =∂+X · ∂+X +
1

2
ψ̄µρ+∂+ψµ = ∂+X · ∂+X + i

1

2
ψ+∂+ψ+, (5.94)

T−− =∂−X · ∂−X +
1

2
ψ̄µρ−∂−ψµ = ∂−X · ∂−X + i

1

2
ψ−∂−ψ−. (5.95)

and the supercurrent

J+ =

)
0

−j+

*
, J− =

)
−j−
0

*
, (5.96)

where j± = 2ψ± · ∂±X. Notice that T++ and j+ is functions of σ+ and T−−
and j− are functions of σ−. For quantized case, the normal ordering is needed.

For the open string, there is one independent set of Lm’s is defined, they
are given by

Lm =
1

π

& π

0

dσ
.
eimσT++ + e−imσT−−

/
=

1

π

& π

−π

dσeimσT++, (5.97)

where in the above we adopt a standard trick by viewing the open string as
one mover of the closed string by noticing (you can use the mode expansion
of Xµ and ψµ to check it)

T−−(τ − σ) = T++ (τ + σ′) (5.98)

where we have defined σ′ = −σ with 0 ≤ σ ≤ π. In other words, we extend
the T++ (τ + σ′) to be valid in the range of −π ≤ σ′ ≤ π with

T++ (τ + σ′) =

E
T++(τ + σ) for 0 ≤ σ′ ≤ π,σ = σ′

T−−(τ − σ) for − π ≤ σ′ ≤ 0,σ = −σ′ (5.99)

The reason for doing the above extension is simple, this makes the integration
to be carried out easily since now T++ is a periodic function in the range of
−π ≤ σ ≤ π. Therefore, we have the energy-momentum operator

T++ = ◦
◦∂+X · ∂+X ◦

◦ +
i

2
◦
◦ψ+∂+ψ+

◦
◦ (5.100)

where we would like to stress that the normal-ordering is to oscillators.
For supercurrent, we extend again j+ (σ+) from 0 ≤ σ ≤ π to −π ≤ σ ≤ π

as we did for T++. The corresponding generators for NS sector are
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Gr =
1√
2π

& π

0

dσ
.
eirσj+ + e−irσj−

/
=

1√
2π

& π

−π

dσeirσj+, (5.101)

and for R sector are

Fm =
1√
2π

& π

0

dσ
.
eimσj+ + e−imσj−

/
=

1√
2π

& π

−π

dσeimσj+. (5.102)

NS sector

Let’s now consider the NS sector. Recall that for the bosonic part, we have

∂+X
µ =

1

2
ls
1

n

αµ
ne

−inσ+

(5.103)

where αµ
0 = lsp

µ. With this, we have (recall that we have set ls = 1 in this
chapter)

◦
◦∂+X · ∂+X ◦

◦ =
1

4
l2s
1

n,m

◦
◦αn · αm

◦
◦e−i(n+m)σ+

=
1

2
l2s
1

k

;
1

2

1

n

◦
◦αn · αk−n

◦
◦

<
e−ikσ+

=
1

2
l2s
1

k

;
1

2

1

n

◦
◦α−n · αk+n

◦
◦

<
e−ikσ+

=
1

2
l2s
1

k∈Z
LX
k e−ikσ+

,

(5.104)

one obtains that

LX
n =

1

2

1

m∈Z

◦
◦α−m · αn+m

◦
◦ (5.105)

There are a few subtleties in deriving the modes Lψ
m and we will give an

illustration of them in what follows. In the NS-sector
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◦
◦ψ+ · ∂+ψ+

◦
◦ =

1

2

1

r,s∈Z+1/2

(−i)s◦
◦br · bs ◦

◦e−i(r+s)σ+

= − i

2

1

r,s∈Z+1/2

)
s− r

2
+

s+ r

2

*
◦
◦br · bs ◦

◦e−i(r+s)σ+

= − i

2

1

r,s∈Z+1/2

s− r

2
◦
◦br · bs ◦

◦e−i(r+s)σ+

= − i

4

1

k∈Z

1

r∈Z+1/2

(k − 2r)◦
◦br · bk−r

◦
◦e−ikσ+

= − i

4

1

k∈Z

1

r∈Z+1/2

(k + 2r)◦
◦b−r · bk+r

◦
◦e−ikσ+

= −i
1

n∈Z
Lψ
ne

−inσ+

(5.106)

where from the second step to the third step, where have used the fact that
i
2

2
r,s∈Z+1/2

s+r
2

◦
◦br · bs ◦

◦e−i(r+s)σ+

= 0, this is because that ◦
◦br · bs ◦

◦ is anti-
symmetric with respect to s, r and all other terms and the summation are
symmetric. Thus we obtain that

Lψ
n =

1

2

1

r∈Z+1/2

(r +
n

2
)◦

◦b−r · bn+r
◦
◦. (5.107)

In short, we have

T++ =
1

2

1

n∈Z
(LX

n + Lψ
n)e

−inσ+

, (5.108)

and Lm = LX
m + Lψ

m.
For supercurrent in NS sector, we will extend again j+ (σ+) from 0 ≤ σ ≤ π

to −π ≤ σ ≤ π as we did for T++. The corresponding generators are

Gr =
1√
2π

& π

0

dσ
.
eimσj+ + e−imσj−

/
=

1√
2π

& π

−π

dσj+. (5.109)

Note that here we don’t have normal-ordering issue, thus

j+
.
σ+

/
= 2ψ+ · ∂+X

=
1√
2

1

s∈Z+1/2

1

n∈Z
bs · αne

−i(s+n)σ+

=
1√
2

1

r∈Z+1/2

Gre
−irσ+

(5.110)

where
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Gr =
1

n∈Z
α−n · br+n. (5.111)

Using the commutation relation of the mode expansion operators, we can
derive the commutation relations for Lm and Gr. The result is

NS super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
D

8
m

.
m2 − 1

/
δm+n,0 (5.112)

[Lm, Gr] =
,m
2

− r
-
Gm+r (5.113)

{Gr, Gs} = 2Lr+s +
D

2

)
r2 − 1

4

*
δr+s,0 (5.114)

Exercise 5.6. Derive the NS-sector super-Virasoro commutation relations
above using the commutation relation of mode operators.

Notice that, if you compare the above commutation relation (5.112) with
the standard Virasoro commutation relation, you can find that c/12 = D/8,
this implies that c = 3D/2. The central charge characterizes the degrees of
freedom of the theory. The bosonic part Xµ contribute D (real) degrees of
freedom. The fermionic part ψµ contribute D/2 (real) degrees of freedom, in
total, they are D +D/2 = 3D/2 degrees of freedom.

To add the constraint of physical state condition , we need to take a close
look at L0,

L0 = LX
0 + Lψ

0 =
1

2
α2
0 +NNS (5.115)

where the level operator NNS is of the form

NNS =

∞1

n=1

α−n · αn +

∞1

r=1/2

rb−r · br (5.116)

Similar as the bosonic case, to promote the classical constraint L0 = 0 to
operator constraint, we must introduce the normal ordering constant aNS .
All other generator do not have the normal ordering issue. Therefore, the
physical state condition are

(L0 − aNS)|φ〉 = 0 (5.117)

Lm|φ〉 = Gr|φ〉 = 0, ∀m, r > 0 (5.118)
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The condition (5.117) is usually called mass-shell condition . Recall the
αµ
0 = lsp

µ, the mass formula operator is

M2 =
1

α′ (NNS − aNS). (5.119)

R sector

In a similar way, for R sector, we have the generators corresponding to T++

Lm = LX
m + Lψ

m (5.120)

with LX
m the same with LX

m of NS sector and

Lψ
m =

1

2

1

n∈Z
(n+

m

2
)◦

◦b−n · bm−n
◦
◦. (5.121)

The generators of supercurrent are

Fm =
1

n∈Z
α−n · bm+n. (5.122)

The commutation relations of these generators are

R sector super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0 (5.123)

[Lm, Fn] =
,m
2

− n
-
Fm+n (5.124)

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n,0 (5.125)

Exercise 5.7. Derive the R-sector super-Virasoro commutation relations
above using the commutation relation of mode operators.

Note that the R sector commutation relation of Lm is very different with
the standard form of the commutation relation of the generaors Lm of the
energy-momentum tensor. This is because that energy-momentum tensor is
not a tensor, it depends on the choice of the frame of coordinates. If we
choose the appropriate frame of coordinates, we can obtain the same form of
commutation relation as the NS sector.

To give the physical state condition, we also need to introduce the normal
ordering constant aR for L0. Note that
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L0 = LX
0 + Lψ

0 =
1

2
α2
0 +NR (5.126)

where the level operator NR is of the form

NR =

∞1

n=1

(α−n · αn + nd−n · dn) . (5.127)

The physical state condition are

(L0 − aR)|φ〉 = 0, (5.128)

Lm|φ〉 = 0, ∀m > 0, (5.129)

Fm|φ〉 = 0, ∀m ≥ 0. (5.130)

The condition (5.128) is called mass shell condition. Recall the αµ
0 = lsp

µ,
the mass formula operator is

M2 =
1

α′ (NR − aR). (5.131)

Notice that from (5.125), one obtains {F0, F0} = 2L0, i.e., F
2
0 = L0. This

directly implies that aR = 0, since we can use the physical state condition
that F0|φ〉 = 0. Let us take a close look at this physical condition. Since

F0 =
1

n∈Z
α−n · dn

= α0 · d0 +
∞1

n=1

α−n · dn +

−11

n=−∞
α−n · dn

= α0 · d0 +
∞1

n=1

(α−n · dn + d−n · αn)

(5.132)

Note that dµ0 = Γµ/
√
2. For open string, αµ

0 = lsp
µ, we have

F
p · Γ +

√
2

ls

∞1

n=1

(α−n · dn + d−n · αn)

G
|φ〉 = 0 (5.133)

while for closed string right-mover (similarly for left-mover), recall that αµ
0 =

lsp
µ/2, we have

F
p · Γ +

2
√
2

ls

∞1

n=1

(α−n · dn + d−n · αn)

G
|φ〉 = 0 (5.134)
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where we used αµ
0 = lsp

µ/2 In each case, it is the stringy generalization of
Dirac equation, known as Dirac-Ramond equation.

One may wonder why don’t we set

F0|φ〉 = c|φ〉 (5.135)

with c a Grassmann number. Even so, we still have

L0|φ〉 = F 2
0 |φ〉 = c2|φ〉 = 0, (5.136)

this still giving aR = 0. The other way to think that c = 0 is that we don’t
have an ambiguity in defining F0, unlike L0.

5.4.3 Superconformal symmetry

We now discuss how to obtain the classical super-Virasoro algebra from the
coordinate transformations. I will give an illustration for closed string in NS-
sector. In other words, we will derive the classical super-Virasoro algebra
given here without the central terms. In the supersymmetric case, once the
world-sheet to be curved and to be supersymmetric, we need to have super-
gravity on the world-sheet. Since we have now fermions on the world-sheet,
the metric is not a good variable and we need to use vielbein e a

α instead
such that γαβ = eα

aεβ
bηab with ηab the 2d flat metric. Recall that

ea = e a
α (σ)dσα, ea = e α

a (σ)
∂

∂σα
, (5.137)

are dual to each other, i.e., e a(eb) = δ a
b . There are four symmetries of e a

α ,
2 local diffeomorphism, 1 Weyl symmetry and 1 Lorentz symmetry SO(1, 1),
these symmetries allow us to set

e a
α = δ a

α , (5.138)

means that the metric is flat.
The super partner of e a

α is the world-sheet gravitino χα, a vector spinor
(Majorana-Weyl spinor) on the world-sheet. There are two fermionic sym-
metries η(σ) and two SUSY ε(σ), both of them are local symmetries, these
symmetries allow us to set

χα = 0. (5.139)

The world-sheet local SUSY transformations are

δχα = ∇αε, δe a
α = ε̄ρaχα (5.140)
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where ∇α is covariant derivative defined on the curved world-sheet using the
corresponding spin connection (since the spin connection does not contribute
to the spinor term, here ∇α can be relaced with ∂α).

The SUSY preserves e a
α = δ a

α and χα = 0, thus

δχα = ∇αε = 0, δe a
α = ε̄ρaχα = 0. (5.141)

When we choose χα = 0 and ε = const., the above conditions holds, but this
is special solution. Let’s firstly consider the fermionic symmetry

δχα = iραη, (5.142)

expressed in light-cone coordinates,

δχ± = iρ±η =

"
####$

####%

i

;
0 1

0 0

<;
η−

η+

<
=

;
iη+

0

<

i

;
0 0

−1 0

<;
η−

η+

<
=

;
0

−iη−

< . (5.143)

By properly choosing the gauge ηA = η±, we obtain

χ+ =

)
0

(χ+)+

*
, χ− =

)
(χ−)−

0

*
. (5.144)

This gauge choice can be summarized as ραχα = 0. Now, consider the SUSY
transformation

δ(χ+)+ = ∂+ε+ = 0, δ(χ−)− = ∂+ε+ = 0, (5.145)

this implies ε+(σ
−) and ε−(σ

+) are holomorphic and anti-holomorphic re-
spectively. This means that holomorphic and anti-holomorphic SUSY can
also preserve e a

α = δ a
α and χα = 0.

In superspace (σα, θA) formalism, the SUSY transformation is

δθ± = ε±(σ
∓), δσα = θ̄ραε ⇔ δσ± = −2iθ∓ε∓(σ

±). (5.146)

For simplicity, in the following we focus only on the holomorphic part and
the anti-holomorphic part can be discussed exactly in the same way. In other
words, we have

δθ+ = ε+
.
σ−/ , δσ− = −2iθ+ε+

.
σ−/ (5.147)

These transformations should be given by the part of the corresponding gen-
erator responsible for the holomorphic one. In general, the general one in-
cluding both holomorphic and anti-holomorphic contributions is given by the
ε̄Q with Q given in (5.29) as
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QA =
∂

∂θ̄A
− (ραθ)A ∂α (5.148)

Note that since ε is no longer a constant spinor, we don’t have ε̄Q = Q̄ε due
to Q being an operator. Writing explicitly,

ε̄Q = iεT ρ0Q = i (ε−, ε+)

)
0 −1
1 0

*)
Q−
Q+

*
= i

9
−ε−(σ

+)Q+ + ε+(σ
−)Q−

:

(5.149)
So we expect that the holomorphic part is generated by

iε+Q− (5.150)

Let us do a quick check

δθ+ = [iε+Q−, θ+] = iε+
∂θ+
∂θ̄−

= ε+
.
σ−/ ,

δσ− =
9
iε+Q−,σ

−: = −iε+
.
σ−/ .ρ−θ

/
− 2iε+ (ρ+θ)−

= 2iε+θ+ = −2iθ+ε+(σ
−).

(5.151)

In the above, we have used the following fact about light-cone metric and
Dirac matrices

η−+ = −2, (ρ+θ)− =

)
0 1
0 0

*)
θ−
θ+

*0000
−
= θ+. (5.152)

For closed string in NS-sector, recall that SUSY transformation is

δψµ
− = −2∂−X

µε+, δψµ
+ = 2∂+X

µε−. (5.153)

When ε± is promoted into holomorphic and anti-holomorphic function, they
should satisfy the NS boundary conditions, therefore, we have the following
Fourier expansion (take ε+(σ

−) as an example, it’s antiperiodic)

ε+
.
σ−/ = −

1

r∈Z+1/2

εre
2irσ−

(5.154)

We have now

iε+
.
σ−/Q− = i

1

r∈Z+1/2

εre
2irσ−

)
∂

∂θ̄−
− (ραθ)− ∂α

*

= −i
1

r∈Z+1/2

εre
2irσ−

)
∂

∂θ̄−
+ 2θ+∂−

*

= 2
1

r∈Z+1/2

εrGr,

(5.155)
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where

Gr = − i

2
e2irσ

−
)

∂

∂θ̄−
+ 2θ+∂−

*
. (5.156)

Note that from
∂θB
∂θ̄A

= −i
.
ρ0
/
BA

, (5.157)

we have
∂θ+
∂θ̄−

= −i
.
ρ0
/
+− = −i. (5.158)

From SUSY transformation in superspace, we have for each given r

(δθ+)r = −εre
2irσ−

,
.
δσ−/

r
= 2iθ+εre

2irσ−
(5.159)

which can be generated by 2εrGr and these can be checked easily. So
Gr(4.234) is the generator, corresponding to the classical Gr in the super-
Virasoro discussed earlier. Let us check if this is true indeed.

{Gr,Gs} = ie2i(r+s)σ−
)
∂− − (r + s)θ+

∂

∂θ̄−

*
= 2Lr+s. (5.160)

where r + s is an integer and

Ln =
i

2
e2inσ

−
)
∂− − nθ+

∂

∂θ̄−

*
(5.161)

One also can check

[Ln,Lm] = (n−m)Ln+m (5.162)

[Ln,Gr] =
,n
2
− r

-
Gn+r. (5.163)

This coincides with the classical super-Virasoro algebras in NS sector.

Exercise 5.8. Prove the super-Virasoro algebra commutators (5.160)-(5.163)
above.

5.4.4 Ghost elimination

Spurious state

§ 5.5 Light-cone quantization

The appearance of the super-Virasoro algebra, just like the case of the bosonic
string, indicates that there is a residue of symmetry after the gauge fixing,
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which is actually the super-conformal symmetry as demonstrated in the pre-
vious section.

As in the bosonic case, we can still use the allowed bosonic conformal
transformations σ± → σ′± = σ′± (σ±) to set the light-cone gauge condition
for X+ as

X+(τ,σ) = x+ + p+τ (5.164)

Let us give a bit detail discussion of the previously given global SUSY to the
super-conformal one.

§ 5.6 Superconformal field theory

Recall that the RNS action in world-sheet light cone coordinates is

S =
1

πα′

&
d2σ∂+X · ∂−X +

i

π

&
d2σ(ψ− · ∂+ψ− + ψ− · ∂+ψ−), (5.165)

and also recall that for Wick rotation τ = −iτ̃ , we introduced complex coor-
dinates w = τ̃ − iσ and w̄ = τ̃ + iσ; and also z = e2w and z̄ = e2w̄, then we
have

d2σ = dτdσ = −idτ̃dσ =
1

2
dw̄dw =

1

2

dz̄dz

4z̄z
(5.166)

As per usual, we simply write the τ̃ as τ for convenience.

§ 5.7 Appendix: group theory



Chapter 6

Spacetime supersymmetric string theory

In the last chapter, we have discussed the RNS formalism of the superstring,
where we introduced the world-sheet superspace (σ, θ) and the fermionic field
ψµ, which is a spacetime vector and a world-sheet spinor. The main advantage
of the RNS formalism is that the quantization maintains space-time Lorentz
invariance as a manifest symmetry is easy to implement. However, there are
some disadvantages of the RNS formalism, the first thing is that spacetime
supersymmetry is not manifest. The GSO projection is necessary to show that
ten-dimensional RNS superstring has an equal number of bosons and fermions
at each mass level. Another one is that the Fock space are constructed for
R-sector (spacetime fermion states) and NS-sector (spacetime boson states)
separately.

In this chapter, we will discuss the spacetime supersymmetric string theory,
which is introduced by Green and Schwarz, thus named as Green-Schwarz
(GS) formalism. For this formalism, we introduce the spacetime superspace
and the spacetime spinor ΘA. Both of Xµ(σ) and ΘA(σ) are world-sheet
scalars, namely, under world-sheet coordinate transformation σ → σ′, we
have

X ′µ(σ′) = Xµ(σ), Θ′A(σ′) = ΘA(σ). (6.1)

As we will see, this formalism can overcome the shortcomings of the RNS
formalism, the GSO projection is automatically built in the theory thus the
spacetime supersymmetry is manifest, and the bosonic and fermionic strings
are unified in a single Fock space. But, as you may have guessed, these advan-
tages does not come for free, the main disadvantage for the GS formalism is
that the covariant quantization of the theory is almost impossible because of
its high nonlinearity. The light-cone quantization can be implemented, here
the Lorentz symmetry is not manifest.

101
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§ 6.1 Green-Schwarz formalism for D0-brane

Let us begin with the discussion of the point particle (or D0-brane in string
theory content), which is simple but rich enough to give us some insights.
After this preparation, we will turn to the string (D1-brane) case in the next
section.

Recall that the action of a massive relativistic point particle is

S = −m

& !
−Ẋ2dτ, (6.2)

our aim is to generalize it to the action which describes the supersymmetric
massive point particle. To this end, we need to introduce N spinor fields
ΘA(τ) with A = 1, · · · ,N . The number N characterizes the number of su-
persymmetries, usually the number is chosen as the minimal spin in a given
spacetime dimensionD. We will use notionΘAa to denote the a-th component
of spinor ΘA. In a given spacetime dimension D, the number of components
is ⌊D/2⌋ (the integer part of number D/2) for a general Dirac spinor.

Let us first recall the Majorana representation of the Dirac gamma matri-
ces Γµ, µ = 0, 1, · · · , D − 1 with

{Γµ,Γ ν} = 2ηµν . (6.3)

Each Γµ is a real matrix and we have

(Γ 0)† = (Γ 0)T = −Γ 0, (Γ i)† = (Γ i)T = Γ i, i = 1, · · · , D − 1. (6.4)

Using these equations, we obtain

(Γµ)T = Γ 0ΓµΓ 0. (6.5)

For Majorana spinor ψ, its Dirac conjugation is ψ†Γ 0 = ψTΓ 0. For two
spinors ψ1 and ψ2, we have a useful formula

ψ̄1Γ
µψ2 = ψT

1 Γ
0Γµψ2 = ψ1a

.
Γ 0Γµ

/
ab

ψ2b

= −ψ2b

.
Γ 0Γµ

/T
ba

ψ1a = −ψT
2

.
Γ 0Γµ

/T · ψ1

= −ψT
2 Γ

µTΓ 0Tψ1 = −ψ̄2Γ
µΓ 0Γ 0Tψ1

= −ψ̄2Γ
µψ1.

(6.6)

Another formula we will frequently use is (ψ̄Γµ)a = (Γ 0Γµψ)a, you can prove
it using the properties of the gamma matrices.

With these preparations, we are now at a position to give our supersym-
metric action. In order to do this, we need to introduce a combination of the
bosonic and fermionic fields
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Πµ
0 = Ẋµ − Θ̄AΓµΘ̇A, (6.7)

where the Einstein summation of repeated index A is assumed. The subscript
0 forΠµ

0 indicates that this is forD0-brane, as we will see later in this chapter,
for Dp-brane, we have

Πµ
α = ∂αX

µ − Θ̄AΓµ∂αΘ
A, α = 0, 1, · · · , p− 1. (6.8)

The supersymmetric action is constructed by substitute Ẋµ in the action
(6.2), Ẋµ → Πµ

0 . As a result, we obtain

S1 = −m

& !
−Π0 ·Π0dτ, (6.9)

where the subscript of S1 indicates that is is not the final result, we still need
to add an extra part. But before that, let us first discuss this action.

Symmetries of the action

There are two symmetries of the action, the first one is the local diffeomor-
phism of world-line, and the second is the global super-Poincaré symmetry.

• Local diffeomorphism of world-line.
• Global super-Poincaré symmetry. Consider the supersymmetric transfor-

mations
+
δΘAa = εAa

δXµ = ε̄AΓµΘA
(6.10)

where εAa are Grassmann constants and the summation over repeated
label A is assumed. In fact, Π0 is invariant under the transformation

δ
,
Ẋµ − Θ̄AΓµΘ̇A

-
=

d

dτ

.
ε̄AΓµΘA

/
− ε̄AΓµΘ̇A − Θ̄AΓµε̇A

=ε̄AΓµΘ̇A − ε̄AΓµΘ̇A = 0. (6.11)

This implies that the action S1 is invariant under the transformation.

Exercise 6.1. Prove that the action S1 is invariant under local diffeomor-
phism of world-line

6.1.1 D = 10 and N = 2 case

Since the D0-brane is a massive point particle that appears as a non-
perturbative excitation in the type IIA theory, which is a D = 2 and N = 2
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theory, hereinafter, we will focus on this case. Now we have two spinors Θ1

and Θ2 which are both Majorana-Weyl and have opposite chirality. From
them, we can construct a Majorana (but not Weyl) spinor

Θ = Θ1 +Θ2, (6.12)

and Θ1 and Θ2 can be obtained by projection

Θ1 =
1

2
(1 + Γ 11)Θ, Θ2 =

1

2
(1− Γ 11)Θ, (6.13)

where Γ 11 = Γ 0Γ 1 · · ·Γ 9 satisfying (Γ 11)2 = 1, {Γ 11,Γµ} = 0, ∀µ = 0, · · · 9
and (Γ 11)T = Γ 11. Similar as the Γµ, we have the following useful formulas
for spinor calculation

ψ̄1Γ
11ψ2 = −ψ̄2Γ

11ψ1, (6.14)

(ψ̄Γ 11)a = (Γ 0Γ 11ψ)a, (6.15)

ψ̄1Γ
µΓ 11ψ2 = ψ̄2Γ

µΓ 11ψ1. (6.16)

As you may have learned in quantum field theory, it’s easily checked that

1

2
(1± Γ 11) (6.17)

are projectors. Given the above, we have

Πµ
0 = Ẋµ − Θ̄1ΓµΘ̇1 − Θ̄2ΓµΘ̇2

= Ẋµ −
.
Θ1

/T
Γ 0ΓµΘ̇1 −

.
Θ2

/T
Γ 0ΓµΘ̇2

= Ẋµ − 1

4
ΘT

.
1 + Γ 11

/
Γ 0Γµ

.
1 + Γ 11

/
Θ̇ − 1

4
ΘT

.
1− Γ 11

/
Γ 0Γµ

.
1− Γ 11

/
Θ̇

= Ẋµ − 1

2
Θ̄Γµ

.
1 + Γ 11

/
Θ̇ − 1

2
Θ̄Γµ

.
1− Γ 11

/
Θ̇

= Ẋµ − Θ̄ΓµΘ̇.
(6.18)

Though the expression of S1 looks good, the action S1 is not the required
theory, this can be seen by deriving the equations of motion associated with
Xµ and Θ. The canonical conjugated momentum to Xµ is

Pµ =
δS1

δẊµ
=

m
,
Ẋµ − Θ̄Γ Θ̇

-

√
−Π0 ·Π0

=
mΠ0µ√
−Π0 ·Π0

(6.19)

The equation of motion for Xµ is

∂τ
∂L

∂∂τXµ
− ∂L

∂Xµ
= 0 → Ṗµ = 0, (6.20)



CHAPTER 6. SPACETIME SUPERSYMMETRIC STRING THEORY105

which means momentum conservation Pµ = const. By calculating the norm
of Pµ, we obtain the mass-shell condition

P2 = −m2, (6.21)

which indicates that not all components are independent.
For the Majorana spinor Θ, notice that (remembering that Θ are Grass-

mann numbers)

PΘ =
∂L
∂Θ̇

=
m

,
Ẋµ − Θ̄ΓµΘ̇

-
Θ̄Γµ

√
−Π0 ·Π0

= PµΘ̄Γµ = PµΓ
0ΓµΘ (6.22)

(6.23)

where in the last step, we have used the fact that (Γµ)T = Γ 0ΓµΓ 0. Similarly,

∂L
∂Θ

= −Pµ
˙̄ΘΓ = −PµΓ

0ΓµΘ̇. (6.24)

From the Eular-Lagrange equation and using the equation of motion of Xµ,
we arrive at the result PµΓ

0ΓµΘ̇ = Γ 0P · ΓΘ̇ = 0, multiplying both sides
with Γ 0, we have the following Dirac equation

P · ΓΘ̇ = 0. (6.25)

Using the property of Dirac gamma matrices, it’s easily checked that (P ·
Γ )2 = P2 which equals to −m2. Multiplying both sides of equation (6.25)
with P · Γ , we obtain

(P · Γ )2Θ̇ = −m2Θ̇ = 0. (6.26)

Whenm ∕= 0, Θ must be a constant spinor on-shell. This is too strong since
we normally expect that its equations of motion only reduces its degrees
of freedom by half but here it reduces all. Specifically, this would imply
that the static vacuum-like solution would preserve no supersymmetry but
usually it should preserve half of the supersymmetry. Let us make it clearer by
considering the static solution by choosing Pµ = (m, 0, · · · , 0). The natural
solution for this is choose Θ = 0 since we have only a bosonic vacuum like
solution. Even if we choose Θ = const, we can use the supersymmetry δΘAa =
εAa, we can make Θ ≡ 0. However, once this choice is made, we have no
supersymmetry left which can preserve the static solution Pµ = (m, 0) and
Θ = 0. But, in general, we still expect that there is still half of supersymmetry
left which preserves this solution. This indicates that for massive case, the
Dirac equation (6.25) is not the required equation.

For the massless case m = 0, we must use the Einbein field action
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S =
1

2

&
Ẋ2

e(τ)
dτ, (6.27)

where e(τ) is the einbein of the world-line. If we follow the procedure given
before, the corresponding supersymmetric action is

S =
1

2

&
dτe−1(τ)Π2

0 . (6.28)

The action is invariant under world-line diffeomorphism and supersymmetric
transformation "

#$

#%

δΘ = ε

δXµ = ε̄ΓµΘ

δe(τ) = 0

(6.29)

Exercise 6.2. Prove that the action (6.28) is invariant under the supersym-
metric transformation (6.29).

From the action, we have

Pµ =
δS

δẊµ
= e−1(τ)Π0µ = e−1(τ)

,
Ẋµ − Θ̄ΓµΘ̇

-
, (6.30)

and the equations of motion for Xµ,Θ and e(τ) are

Ṗu = 0, (6.31)

P · ΓΘ̇ = 0, (6.32)

Π2
0 = 0. (6.33)

We see that Pµ ≡ const, and the last equation is nothing but the massless
on-shell condition P2 = m = 0. For the second one (Dirac equation, which
have the same form as the massive case), since (P · Γ )2 = P2 = 0, this does
not lead to Θ̇ = 0 as was the case for massive case discussed earlier.

Consider the solution Pµ = (P0,P), from the mass-shell condition, we
have (P0)2 = ‖P‖2. The Dirac equation becomes

0 = (P0Γ0 +P · Γ)Θ̇ = P0Γ0(1 +
Γ 0P · Γ

P0
)Θ̇

⇔(1 +
Γ 0P · Γ

P0
)Θ̇ = 0. (6.34)

Here we used P and Γ to denote the space components. It’s easily checked
that

)
Γ 0P · Γ

P0

*2

= 1, (6.35)
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which implies that the eigenvalues of the matrix are ±1. Again, we can check
that

Tr

)
Γ 0P · Γ

P0

*
= 0, (6.36)

which implies that half of the eigenvalues of the matrix are −1 while half of
them are +1. Suppose we are working in the basis of the eigenvector of this
operator, we have

1 +
Γ 0P · Γ

P0
= 2diag(1, · · · , 1H IJ K

16

, 0, · · · , 0H IJ K
16

). (6.37)

Correspondingly, we divide the components of Θ into Θ = (Θ+,Θ−)
T with

Θ+ for +1 eigenvalues and Θ− for −1 eigenvalues. Therefore, the equation
of motion (6.34) becomes

Θ̇+ = 0 (6.38)

and there is no constraint for Θ−. Consider the BPS solution, for which we
choose P0 = (P0,P0, 0, · · · , 0) in some frame, the solution should be

Θ+ ≡ 0, Θ− = Θ−(τ). (6.39)

The supersymmetric transformation must preserve the Θ+ ≡ 0, which implies
that ε+ ≡ 0, only half the supersymmetries left. This looks good.

The above discussion means that the Dirac equation of the form P·ΓΘ̇ = 0
works well for massless particle but not well for massive particle. Therefore,
we can guess that the operator acting on Θ̇ is P ·Γ plus some extra term mA
which is proportional to m and preserve the Lorentz symmetry, viz.,

(P · Γ +mA)Θ̇ = 0 (6.40)

Since we have known that (P ·Γ )2 = −m2, this, as in equation (6.26), implies
Θ̇ = 0 which is not we want. So, to remedy, we can assume that (P · Γ +
mA)2 = 0, which then makes Θ̇ free from being zero. This suggest that
(mA)2 = m2, finally, after some trials, you will find the right form

(P · Γ +mΓ 11)Θ̇ = 0. (6.41)

It’s easy to check that (P · Γ +mΓ 11)2 = 0.
The above proposed modification of the equation for Θ can be derived

from the following Lorentz invariant action

S2 = −m

&
dτΘ̄Γ 11Θ̇ (6.42)



108 6.1. GREEN-SCHWARZ FORMALISM FOR D0-BRANE

which is invariant up to total derivative under global supersymmetry trans-
formation (6.10) since

δS2 = −m

&
dτ ε̄Γ 11Θ̇ = −m

&
dτ∂τ

.
ε̄Γ 11Θ

/
. (6.43)

And the action is also invariant under local world-line diffeomorphism.

Therefore, the complete action for D0-brane is

S = S1 + S2 = −m

& !
−Π0 ·Π0dτ −m

&
Θ̄Γ 11Θ̇dτ (6.44)

where Πµ
0 = Ẋµ − Θ̄ΓµΘ̇. The action gives the correct equation of

motion for Xµ and Θ:

Ṗµ = 0, (P · Γ +mΓ 11)Θ̇ = 0, (6.45)

where

Pµ =
mΠ0µ√
−Π0 ·Π0

. (6.46)

6.1.2 Kappa symmetry

The action S is invariant under supersymmetric transformation (6.10) and
local world-line diffeomorphism. There is another symmetry of the action,
known as Kappa symmetry.

Let us take a close look of the underlying physics of this action. To this
end, let us re-write the action in the following way as we did for the massless
case using the conserved momentum Pµ as

S =

&
dτ

,
Πµ

0 Pµ −mΘ̄Γ 11Θ̇
-
,

=

&
dτ

C
PµẊ

µ − Θ̄
.
P · Γ +mΓ 11

/
Θ̇
D
. (6.47)

which gives the expected correct equation of motion for both Xµ and Θ.
From the last equality of (6.47) we see for the spinor contribution to the

acton that the appearance of the operator
.
P · Γ +mΓ 11

/
indicates, in a

similar fashion as in the massless case, that only half of the spinor components
enter into their dynamics and the other half do not participate the dynamics
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at all and simply decouple. This can be seen easily from the following

.
P · Γ +mΓ 11

/
= P0Γ0(1 + Γ 0P · Γ

P0
+

m

P0
Γ 0Γ 11), (6.48)

where

)
Γ 0P · Γ

P0
+

m

P0
Γ 0Γ 11

*2

= 1, Tr

)
Γ 0P · Γ

P0
+

m

P0
Γ 0Γ 11

*
= 0. (6.49)

This implies that in a well-chosen basis,

1 + Γ 0P · Γ
P0

+
m

P0
Γ 0Γ 11 = 2diag(1, · · · , 1H IJ K

16

, 0, · · · , 0H IJ K
16

), (6.50)

which, when acting on Θ, will project half of components of Θ away.
The reason that we still need them is to express the spinor in a Lorentz

covariant form such that the Lorentz symmetry is manifest in the action S.
In other words, these half of the components of Θ must be gauge degrees
of freedom and we should have 16 local fermionic gauge symmetry to gauge
them away1. In other words, that the action S must exhibit 16 local fermionic
gauge symmetry to gauge away them. Otherwise, this theory must be sick.
This kind of gauge symmetry, called κ -symmetry.

The κ-symmetry involves a variation δΘ, whose form is determined later,
combined with a transformation of the bosonic variables given by

δXµ = Θ̄ΓµδΘ = −δΘ̄ΓµΘ. (6.51)

The transformation of Πµ
0 is therefore

δΠµ
0 = ∂0δX

µ − δΘ̄ΓµΘ̇ − Θ̄ΓµδΘ̇

= −δ ˙̄ΘΓµΘ − δΘ̄ΓµΘ̇ − δΘ̄ΓµΘ̇ − Θ̄ΓµδΘ̇

= −2δΘ̄ΓµΘ̇.

(6.52)

The variation of the action S1 under a κ -transformation is

δS1 = m

&
dτ

Π0µδΠ
µ
0√

−Π0 ·Π0

= −2m

&
dτ

Π0µδΘ̄ΓµΘ̇√
−Π0 ·Π0

= −2m

&
dτδΘ̄γΓ 11Θ̇ = 2m

&
dτ ˙̄ΘγΓ 11δΘ,

(6.53)

where we have defined

1 The Majorana spinor Θ here have only 16 off-shell (the equation of motion is not
used) degrees of freedom, and 8 on-shell (the equation of motion is used) degrees of
freedom.
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γ =
Π0 · ΓΓ 11

√
−Π0 ·Π0

(6.54)

Note that

γ2 =
Π0 · ΓΓ 11Π0 · ΓΓ 11

−Π2
0

= 1, Tr γ = 0. (6.55)

Thus we can use γ to construct projection operator

P± =
1± γ

2
, P+P− = P−P+ = 0, P 2

± = P±. (6.56)

Now consider the variation of S2 under this transformation

δS2 = −m

&
dτδΘ̄Γ 11Θ̇ −m

&
dτΘ̄Γ 11δΘ̇

= −m

&
dτδΘ̄Γ 11Θ̇ −m

&
dτ

C
∂0

.
Θ̄Γ 11δΘ

/
− Θ̇Γ 11δΘ

D

∼ −2m

&
dτδΘ̄Γ 11Θ̇ = 2m

&
dτ ˙̄ΘΓ 11δΘ

(6.57)

Therefore, we obtain

δS = δS1 + δS2 = −2m

&
dτδΘ̄γΓ 11Θ̇ − 2m

&
dτδΘ̄Γ 11Θ̇

= −2m

&
dτδΘ̄(γ + 1)Γ 11Θ̇ = 2m

&
dτ ˙̄ΘΓ 11(−γ + 1)δΘ

= −4m

&
dτδΘ̄P+Γ

11Θ̇ = 4m

&
dτ ˙̄ΘΓ 11P−δΘ

Given the above, if we choose

δΘ̄ = κ̄P−

or equivalently
δΘ = P+κ

where κ is an arbitrary Majorana spinor, the action is invariant up to a total
derivative, since P−P+ = P+P− = 0.

To summarize, the D0-brane action is invariant up to a total derivative
under κ-symmetry

δΘ̄ = κ̄P−, δXµ = −κ̄P−Γ
µΘ (6.58)

or equivalently
δΘ = P+κ, δXµ = Θ̄ΓµP+κ (6.59)
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The appearance of the projection operator P− or P+ in the above implies
that only half of Θ can be gauged away by the local fermionic κ -symmetry
and those half of Θ are purely gauge degrees of freedom and have no physical
dynamics. The other point is that without this symmetry there would be the
wrong number of propagating fermionic degrees of freedom.

§ 6.2 Green-Schwarz formalism for superstring

Generalized Nambu-Goto action.—Recall that in the bosonic string
chapter, we see that the natural generalization of the world-line action of
the D0-brane to the D1-brane (i.e., string) is the Nambu-Goto action

SNG = −T

&
d2σ

!
− detGαβ , (6.60)

where Gαβ = ∂αX · ∂βX. Here, we set T = 1/π (α′ = 1/2).
As we have discussed for D0-brane case, we can take the substitution

∂αX
µ → Πµ

α = ∂αX
µ − Θ̄AΓµ∂αΘ

A, (6.61)

where ΘA (A = 1, · · · ,N ) are spinors corresponding to N supersymmetries,
and the summation over repeated indices A are assumed. Thus, we have the
action

S1
NG = − 1

π

&
d2σ

!
− detGαβ , (6.62)

where Gαβ = Πα ·Πβ .
Generalized Polyakov action.—For the D0-brane, we also discussed

the einbein field action, which in string case, corresponds to the Polyakov
action

SP = −T

2

&
dσ2

√
− dethhαβ∂αX · ∂βX. (6.63)

We can also take the substituting (6.61) and set T = 1/π, then the generalized
action is

S1
P = −T

2

&
dσ2

√
− dethhαβΠα ·Πβ . (6.64)

Similar as the D0-brane action, there are two symmetries for both of the
actions:

• Local diffeomorphism of the world-sheet.
• Global super-Poincaré symmetry.

Exercise 6.3. Prove that the action S1
NS and S1

P are invariant under local
diffeomorphism of world-sheet and global super-Poincaré symmetry.
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6.2.1 D = 10 and N = 2 case

There are two superstring theories with N = 2 in spacetime dimension D =
10, known as type IIA and type IIB theories. For which ΘA(A = 1, 2) are
Majorana-Weyl spinors and the difference between two theories is that in
type IIA theory, Θ1 and Θ2 are of opposite chirality but in type IIB theory,
they are of the same chirality:

type IIA: Γ 11ΘA = (−1)A+1ΘA, (6.65)

type IIB: Γ 11ΘA = ΘA. (6.66)

We known that there are 8 bosonic degrees of freedom (8 transverse com-
ponents Xµ, µ = 1, · · · , 8 in light-cone gauge), but 16 fermionic degrees of
freedom, this do not satisfy the requirement of spacetime supersymmetry.
Thus we need to introduce the kappa-symmetry to reduce the 16 fermionic
degrees of freedom to 8 fermionic degrees of freedom.

Kappa-symmetry for generalized Nambu-Goto action

In analogy to the discussion of the D0-brane, the bosonic variable transforms
under κ transformations according to

δXµ = Θ̄AΓµδΘA = −δΘ̄AΓµΘA, (6.67)

where δΘA will be determined later.
This κ-transformation implies

δΠµ
α = −2δΘ̄AΓµ∂αΘ

A = 2∂αΘ̄
AΓµδΘA. (6.68)

With this, for generalized Nambu-Goto action S1
NG, we have (G = detGαβ)

δ
√
−G = −1

2
(−G)−1/2δG = −1

2
(−G)−1/2GGαβδGαβ

=
1

2

√
−GGαβδGαβ =

1

2

√
−GGαβ2Πα · δΠβ

= −2
√
−GGαβΠµ

αδΘ̄
AΓµ∂βΘ

A.

(6.69)

Therefore we have

δS1
NG =

2

π

&
d2σ

√
−GGαβΠµ

αδΘ̄
AΓµ∂βΘ

A. (6.70)

The next step is to construct a second contribution to this action, namely
S2, that also has global super-Poincaré symmetry and local world-sheet dif-
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feomorphism symmetry. Moreover, its Kappa variation δS2 should combine
nicely with δS1

NG so as to ensure Kappa symmetry of the sum S = S1
NG+S2.

Here we will construct S2 using a more geometric method which is gen-
erally used in the construction of the world-volume theories taking the form
S1+S2 with S1 Nambu-Goto action and S2 Chern-Simons or Wess-Zumino ac-
tions. The action S2 should also have local diffeomorphism symmetry, there-
fore, it’s natural to describe it as an integral of a 2-form Ω2.

S2 =

&
Ω2 =

1

2

&
d2σεαβΩαβ , (6.71)

where Ω2 does not depend on the world-sheet metric, it’s a topological term.
More generally, for a Dp-brane, it would be an integral of a (p + 1)-form.
Such a geometric structure has manifest diffeomorphism symmetry.

Note that in the absence of background field and in the bosonic case, there
is no possibility for S2. However, this will be possible in the presence of ΘA

So all we need to consider is its supersymmetry and it must involve ΘA and
vanishes when we set ΘA = 0. The way to make the construction of Ω2 much
more easier is to use a trick to make the symmetry of the problem manifest
by formally introducing an additional dimension and considering the 3-from
Ω3 = dΩ2, the world-sheet 2-dimensional manifold M should be regarded as
the boundary of the 3-dimensional manifold D. From the Stokes theorem,

&

D
Ω3 =

&

D
dΩ2 =

&

M=∂D
Ω2. (6.72)

To determine the expressions of Ω2 and Ω3, there are several useful formu-
las we will use frequently. Consider three Majorana-Weyl spinors, ψ1,ψ2,ψ3,
we have

Γµψ[1ψ̄2Γµψ3] = 0. (6.73)

With this, we can prove that for any Majorana-Weyl spinor ψ in ten dimen-
sions, we have

Γµdψdψ̄Γµdψ = 0, (6.74)

where the wedge product is assumed. The proof is left as an exercise.

Exercise 6.4. Prove the formulas (6.73) and (6.74).

It’s more easy to construct Ω3, so we will do it first and then turn to
Ω2. Consider the global spacetime supersymmetry δΘA = εA and δXµ =
ε̄AΓµΘA, there are three one-forms that are supersymmetric, namely,

dΘ1, dΘ2, Πµ = dXµ − Θ̄AΓµdΘA (6.75)

So Ω3 should be a Lorentz-invariant 3-form constructed out of them. Up
to a over constant factor c, which will be determined later, the appropriate
expression is

Ω3 = c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/
Πµ· (6.76)
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The minus sign in the first factor in the above expression is required to ensure
that Ω3 is closed 3-form, i.e., dΩ3 = 0. To check it, substitute the expression

dΠµ = −dΘ̄AΓµΘA = −
.
dΘ̄1ΓµdΘ1 + dΘ̄2ΓµdΘ2

/
(6.77)

into the expression of Ω3, we have

dΩ3 =c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/
dΠµ

=− c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/ .

dΘ̄1ΓµdΘ1 + dΘ̄2ΓµdΘ2
/

=− c
.
dΘ̄1ΓµdΘ

1dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ
2dΘ̄1ΓµdΘ1

+dΘ̄1ΓµdΘ
1dΘ̄2ΓµdΘ2 − dΘ̄2ΓµdΘ

2dΘ̄2ΓµdΘ2
/

=− c
.
dΘ̄1ΓµdΘ

1dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ
2dΘ̄2ΓµdΘ2

/

=0

(6.78)

where at the last step, we have used the formula (6.74).
To determine Ω2, we need to consider the kappa symmetry, we known that

δκS2 =

&

M
δκΩ2 =

&

D
δκΩ3. (6.79)

Thus we have δκΩ3 = dδκΩ2. The δκS
1
NG has be given before, the kappa

symmetry requires that δκS
1
NG+δκS2 = 0. With these preparation, let’s now

try to find the expression of Ω2. Let us now compute the kappa symmetry
variation of Ω3 (the subscript κ is omitted here)

δΩ3 =c
.
dδΘ̄1ΓµdΘ

1 + dΘ̄1ΓµdδΘ
1 − dδΘ̄2ΓµdΘ

2 − dΘ̄2ΓµdδΘ
2
/
Πµ

+ c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/
δΠµ

=2c
.
dδΘ̄1ΓµdΘ

1 − dδΘ̄2ΓµdΘ
2
/
Πµ

+ c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/ .

−2δΘ̄AΓµdΘA
/

=2cd
.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
Πµ

− 2c
.
δΘ̄1ΓµdΘ1 + δΘ̄2ΓµdΘ2

/ .
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/

=2cd
.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
Πµ

− 2c
.
−δΘ̄1ΓµdΘ1dΘ̄2ΓµdΘ

2 + δΘ̄2ΓµdΘ2dΘ̄1ΓµdΘ
1
/

=2cd
.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
Πµ − 2c

.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
dΠµ

=2cd
9.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
Πµ

:
(6.80)

where in the next to the last line we have used dΠµ = −dΘ̄AΓµdΘA and the
formula (6.74) is again used in the derivation.

Since δΩ3 = dδΩ2, we have

δΩ2 = 2c
.
δΘ̄1ΓµdΘ

1 − δΘ̄2ΓµdΘ
2
/
Πµ (6.81)
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Compare with the expression of δS1
NG, we can set c = 1/π, then

δS2 =
2

π

&
d2σεαβ

.
δΘ̄1Γµ∂αΘ

1 − δΘ̄2Γµ∂βΘ
2
/
Πµ

β . (6.82)

Thus the total kappa-variation of the action S is

δS =δS1 + δS2 =
2

π

&
d2σ

√
−G

L
GβαΠµ

β δΘ̄
AΓµ∂αΘ

A

+
εαβ√
−G

9
δΘ̄1Γµ∂αΘ

1 − δΘ̄2Γµ∂αΘ
2
:
Πµ

β

M (6.83)

To analyze it, we need the following formulas

εαβ√
−G

εγδ√
−G

= −
.
GαγGβδ −GαδGβγ

/
, (6.84)

this can be easily checked for all corresponding indices. And another one is

ΓρσΓµ = ηµσΓρ − ηµρΓσ + Γρσµ (6.85)

where we used the abbreviation

Γµ1···µn = Γ[µ1
· · ·Γµn] =

1

n!

1

σ∈Sn

sign(σ)Γσ(1) · · ·Γσ(n). (6.86)

A useful formula for Γµ1···µn is

Θ̄1Γµ1···µnΘ2 = (−1)n(n+1)/2Θ̄2Γµ1···µnΘ1. (6.87)

Exercise 6.5. Prove the formulas (6.84),(6.85) and (6.87)

From the identity (6.84), we have

εαβ
εγδ√
−G

= −
√
−G

.
GαγGβδ −GαδGβγ

/
(6.88)

and

εαβ
εγδ√
−G

Πρ
γΠ

σ
δ ΓρσΓµΠ

µ
β

=−
√
−G

.
GαγGβδ −GαδGβγ

/
Πρ

γΠ
σ
δ Π

µ
β (ηµσΓρ − ηµρΓσ + Γρσµ)

=−
√
−G

.
GαγGβδ −GαδGβγ

/
Πρ

γΠ
σ
δ Π

µ
β (ηµσΓρ − ηµρΓσ)

=−
√
−G

.
GαγGβδ −GαδGβγ

/ .
GδβΓρΠ

ρ
γ −GγβΓσΠ

σ
δ

/

=− 2
√
−GGαβΓµΠ

µ
β

(6.89)

where we have used that Gαβ := Πα ·Πβ . Therefore, we have
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√
−GGαβΓµΠ

µ
β = −1

2
εαβ

εγδΠρ
γΠ

σ
δ Γρσ√

−G
ΓµΠ

µ
β = εαβγΓµΠ

µ
β . (6.90)

where

γ ≡ −
εαβΠµ

αΠ
ν
βΓµν

2
√
−G

. (6.91)

Then the kappa variation of the action becomes

δS =
2

π

&
d2σ

L√
−GGαβδΘ̄1Γµ∂αΘ

1Πµ
β +

√
−GGαβδΘ̄2Γµ∂αΘ

2Πµ
β

(6.92)

+εαβ
9
δΘ̄1Γµ∂αΘ

1 − δΘ̄2Γµ∂αΘ
2
:
Πµ

β

N
(6.93)

=
4

π

&
d2σεαβ

A
δΘ̄1 1 + γ

2
Γµ∂αΘ

1 − δΘ̄2 1− γ

2
Γµ∂αΘ

2

B
Πµ

β (6.94)

=
4

π

&
d2σεαβ

9
δΘ̄1P+Γµ∂αΘ

1 − δΘ̄2P−Γµ∂αΘ
2
:
Πµ

β (6.95)

We can check that
γ2 = 1, Tr γ = 0. (6.96)

The square of γ is

γ2 = − 1

4G

.
εαβΠµ

αΠ
ν
βΓµν

/2
= − 1

8G
εα1β1εα2β2Πµ1

α1
Πν1

β1
Πµ2

α2
Πν2

β2
{Γµ1ν1 ,Γµ2ν2}

(6.97)
Using the identity

{Γµ1ν1 ,Γµ2ν2} = −2ηµ1µ2ην1ν2 + 2ηµ1ν2ην1µ2 + 2Γµ1ν1µ2ν2 (6.98)

and noticing that the Γµ1ν1µ2ν2 term does not contribute, one obtains

γ2 =
1

4G
εα1β1εα2β2 (Gα1α2Gβ1β2 −Gα1β2Gβ1α2) = 1 (6.99)

The trace of γ equals to zero is easy to check.
As we have discussed for D0-brane case, this means

P± =
1± γ

2
(6.100)

are projection operator with P 2
± = P± and P+P− = P−P+ = 0. With the

above preperation, we see that, if we choose the kappa-symmetry transfor-
mation as

δΘ̄1 = κ̄1P−, δΘ̄2 = κ̄2P+ (6.101)

or
δΘ1 = P+κ

1, δΘ2 = P−κ
2 (6.102)
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for arbitrary Majorana-Weyl spinors κ1,κ2 of appropriate chirality (κ1 and
κ2 have the same chirality with Θ1 and Θ2 respectively), then δS = 0. Given
P± as projection operators, the above local fermionic gauge transformations
can be used to gauge away half of the ΘA.

Let us now construct Ω2 from the Ω3 via Ω3 = dΩ2. For this,

Ω3 =c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/
Πµ

=c
.
dΘ̄1ΓµdΘ

1 − dΘ̄2ΓµdΘ
2
/
dXµ

− c
.
dΘ̄1ΓµdΘ

1Θ̄2ΓµdΘ2 − Θ̄1ΓµdΘ1dΘ̄2ΓµdΘ
2
/

=cd
9.
Θ̄1ΓµdΘ

1 − Θ̄2ΓµdΘ
2
/
dXµ − Θ̄1ΓµdΘ

1Θ̄2ΓµdΘ2
:
.

(6.103)

So we have (c = 1/π)

Ω2 = c
9.
Θ̄1ΓµdΘ

1 − Θ̄2ΓµdΘ
2
/
dXµ − Θ̄1ΓµdΘ

1Θ̄2ΓµdΘ2
:
. (6.104)

We therefore have the action S2 as

S2 =
1

π

& 9.
Θ̄1ΓµdΘ

1 − Θ̄2ΓµdΘ
2
/
dXµ − Θ̄1ΓµdΘ

1Θ̄2ΓµdΘ2
:

=
1

π

&
d2σεαβ

9.
Θ̄1Γµ∂αΘ

1 − Θ̄2Γµ∂αΘ
2
/
∂βX

µ − Θ̄1Γµ∂αΘ
1Θ̄2Γµ∂βΘ

2
:

(6.105)
Altogether, the κ-invariant action for the string is

S = S1
NG + S2. (6.106)

Other Dp-branes, some of which will be discussed in later chapters also have
world-volume actions with local κ-symmetry. One example is the 11−D super-
membrane world-volume action. Other examples contain additional world-
volume fields besides Xµ and ΘA. For example, the D-brane world-volume
action also contain U(1) gauge fields.

§ 6.3 Quantization of Green-Schwarz superstring
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