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e world-sheet metric hqg
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8§0.1 The big picture of string theory
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bosonic string theory






Chapter 1
The classical bosonic string

That which does not kill us
makes us stronger.

By Friedrich Nietzsche
From the book “Twilight of the
Idols”

In the usual physical discussion, the elementary physical particles are
mathematically modeled as point particles in spacetime. In string theory,
they are regarded as strings, one-dimensional extended objects; or p-branes,
p-dimensional extended objects. And the spacetime dimension of the usual
physics is 4, one time and three space dimensions. In string theory, we will
see that the spacetime manifold has more dimensions. For bosonic string the-
ory, the critical dimension D = 26 will be our main focus in these lecture
notes. Thus, in general, we will consider a p-brane moving in D-dimensional
spacetime, we denote it as Dp-brane:

e point particle: D0O-brane
e string particle: D1-brane
e general particle: Dp-brane

When a Dp-brane moving in spacetime, it will sweep a p + 1-dimensional
world-volume manifold . We will describe this world-volume theory as a field
theory over the (p + 1)-dimensional space (world-volume coordinate space).
For string (D1-brane) case, the world-volume is two-dimensional, we call it
world-sheet, the world-sheet theory thus is described by D scale fields X*(o%)
over the 2-dimensional world-sheet coordinate space (o°,o!).

Although string and general (p > 2)-brane shares a lot similarities, there
are also some crucial things make string case different

e Stings’ action has a Weyl rescaling symmetry because of their two-
dimensional world-sheet, which makes quantum perturbation theories pos-
sible.
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e The world-sheet quantum theories are renormalizable in the usual quan-
tum field theory sense, but that is not the case for (p > 2)-branes.
e (p > 2)-brane has self-interaction.

In this chapter, we will discuss the classical theory of the bosonic string
via the field theory approach. Both of the closed and open strings will be
discussed in detail.

8§1.1 The relativistic point particle

Let us first recall some basics about the relativistic dynamics and the La-
grangian of the particle. To begin with, we first introduce the two abbrevia-
tions frequently used in relativity

v 1
(2
where v is the velocity of frame K’ relative to frame K.

The first and the most important thing of relativity is Lorentz transfor-
mation

' =y(z — Bet)

v =y

S (1.1)
ct’ = yet — Bx

The space time coordinates are a* = (ct,x), the convention we use for the
metrics are g*¥ = diag(+1,—-1,—1,—-1) and n** = (—1,+1,+1,+1). In this
note we will use the n*¥ metric for Minkowski spacetime. The rest and dy-
namical mass of a particle are denoted as m and m(v), we have the following
crucial formulae

m(v) = ym,

p = m(v)v = ymv,

d
F = wP= E), = m(v)c® — mc?,

E = E +mc® = m(v)c? = ymc?,
E? = 22 + m2ct.
To write down the Lagrangian, recall that for point particle moving in
spacetime, spacetime displacement is

ds® = ndrtda™ = —*dt* + (dx)* = —c*dr?



CHAPTER 1. THE CLASSICAL BOSONIC STRING 9

thus we have dt = ~dr, where 7 is the proper time. Suppose the Lagrangian

is L, then the action is
ty Tf
S = / Ldt = / ~yLdr. (1.2)
t; Ti

K

Since d7 is Lorentz invariant, to make S Lorentz invariant, vL should also
be Lorentz invariant. For free particle, the rest energy Fy = mc? is Lorentz
invariant, it is natural for us to choose vL o< mc?, in fact, the coefficient can

be chose as —1, viz, yL = —mc?,

2 2
L:—%:—mcﬂ/l—%. (1.3)

It’s easily checked that p; = —ngi = ymuw;, which is consistent with the
formula of relativistic momentum. In general, L = —mTcz —V, the Hamiltonian

will be
H=v-p—L=mc®+E,+V = Ei.

From the above discussion, the action of relativistic free particle is (using

cdr = v/ —ds?)
s ! f
S = / —mcidr = —mey/ —ds? = —mc/ vV —ds?. (1.4)

We see that S is the the length of spacetime path of the particle, thus the
real path is the one which take the minimum of the spacetime path length
with fixed initial and final point.

In the above discussion, to make things more clear, we used the SI unit.
From now on, we will work in natural unit, i.e., we set c=1,h = 1.

%

1.1.1 Parametrizing the world-line

Consider the D-dimensional Minkowski spacetime R1P~! with metric
N = diag(—1,+1,--- ,+1).

We’ve seen that the action of the free particle is

t
S:—m/f\/l—XQ,
t;

which is correct, but there is some disharmony of the action, since the time
and space coordinates are not on equal footing, which is not consistent with
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the philosophy of relativity. Actually we choose time ¢ as the parameter to
describe the world-line, i.e., X#(t) = (t,x(t)). Hereinafter, we will use the
capital letter X* to denote spacetimes coordinates and to stress that it is
a function depends on some parameters. For world-line case, we can repa-
rameterize the the world-line with some new parameter 7(here the symbol
is not necessarily the proper time). The world-line X#(7) is a parametrized
X*H 1, 7s) — RYP~Lin spacetime space RUP~1. The action is the length
of the world-line, thus parametrized by 7, we have

Tf ..
S = —m/ \ M XHXVdr, (1.5)

where X# = dX*/dr.
Now the space and time are treated on equal footing, they both are func-
tions of some parameter 7.

1.1.2 FEinbein field action

The action of the point particle

! f
S = fm/ vV —ds? = fm/ VN dXHdXV

has two shortcomings: the action has a square root that is highly nonlinear,
which make its quantization difficult; the action describes only massive par-
ticle. To overcome these two shortcomings, an auxiliary field e(7) over the
world-line, known as einbein field , is introduced,

B X? e(T)m?
L= i) 2 (1.6)

Hereinafter, terms like X2 will always mean an implicit contraction with the
spacetime Minkowski metric. The action is

f
S:/ Ldr.

Under reparameterization 7 — 7/(7), we have

XHM(1) — X"™(1") = XH(7), (1.7)
M (X (7)) = 1, (X' (7)) = 0 (X (7)), (1.8)
dr

e(t) = (1) = e(T)F.
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Note that here the transformation of e(7) is chosen in this form to make the
variation of action S = 0. The Euler-Lagrange equation for the field u(7) is

— ==y, (1.10)

which gives e = v/ —X2/m for m # 0. Substituting it into the Lagrangian
(1.6), we obtain the original square root form.

There is a lot of reasons to deal with the Lagrangian rather than the origi-
nal form. The action appear naturally in Feynman-Schwinger representation
for the propagator of the relativistic particle and this Lagrangian is can be
most straightforwardly generalized for the case of spin particles. This La-
grangian is in the quadratic form which is more easily to quantize. Besides,
the original Lagrangian is singular when m = 0, but the one here is not, thus
it can be used to describe massless particle.

8§1.2 The p-brane and Nambu-Goto action

The action of the point particle is expressed as the length of world-line mul-
tiply the mass of the particle, this can be generalized the case of strings and
p-branes. For a string moving is spacetime, it sweeps a world sheet, thus the
action is naturally the area of the world-sheetmultiply a factor which charac-
terize the internal properties of the string. For a p-brane moving in spacetime,
it sweeps a world-volume, the action thus is the volume multiplies a factor
which characterize the internal properties of the p-brane.

As the point particle are 0-branes, strings are 1-branes, it’s sufficient to
write down the unified p-brane action

S, = pr/dvp, (1.11)

where T}, us called p-brane tension, for O-brane it’s the mass of the particle,
and dV), is the p + 1-dimensional volume element of the world-volume swept
by the p-brane.

Let’s take a close look at dV,. The p + 1-dimension world-volume can

be parameterized by p + 1 independent parameters ¢%, ¢!, -- , P, known as

world-volume coordinates. o!,--- ,0P can be regarded as parameters which
parameterize the p-brane, for example, in the string case, ¢! is the param-
eter to describe the position of the point in the string, and ¢° is a timelike
coordinates.

From differential geometry, we known that p + 1-dimension world-volume

is embedded in R1»P~1 it has a metric induced by the metric of the spacetime

Gop = Nu0a X 05X" = 0,X - 05X, a,f=0,--,p. (1.12)
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The world-volume element is then dV,, = \/— det GopdP ™ o. In summary, we

can rewrite the p-brane action as

S, = —Tp/«/—det Gopd’to. (1.13)

Now let us gives some comments about the name of p-brane tension for
T,. Since the action is dimensionless, notice that world-volume coordinates
0% are also dimensionless, from the dimension of X*, we see that dV,, has
the unit [length]?[time]', the dimension of T}, is

[time] ~! [mass]!

7] = [length]? - [length]?’ (1.14)

the mass per unit p-volume, thus called tension.

1.2.1 The Nambu-Goto action

Let’s now focus on the string (1-brane) action, which, because of its im-
portance, has special name, Nambu-Goto action. We will parameterize the
world-sheet by timelike coordinates ¢ = 7 and spacelike coordinates o' = 0.
There are two kinds of strings, closed and open strings, for both cases we as-
sume o € [0, 7]. When the string moving in spacetime, it sweeps a world-sheet

X*(r,0), w=0,---,D—1, (1.15)

which is noting but a parameterized surface in RM»P~!. The coordinates
0% = (1,0) is called world-sheet coordinates. Since the world-sheet mani-
fold is embedded in spacetime manifold, the spacetime manifold is sometimes
referred to as target space to distinguish it form the world-sheet.

The difference between open and closed string world-sheetis that they have
different boundary conditions, the closed string must satisfy the periodic
boundary condition X*(7,0 + 7) = X*(7,0), the open string case is more
complicated and we will discussion it later.

The action we have construct for p-brane seems a little abstract if you
are not familiar with differential geometry. Now let us take the world-
sheetcase as a concrete example to make you feel more comfortable with
it. For the world sheet, we are concerning about the area element of the
world sheet. Let us check here that /—det Gogdodr is actually the area
element. This can be done more conveniently in Euclidean space RP, the
philosophy is completely the same for Minkowski space. For a parameterized
surface X(7,0) = (X'(1,0),--- , XP(7,0)) in RP, two linearly independent
tangent vectors are
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>

Fig. 1.1 The open string world-sheet parameterized by 7 and o.

du = 0.Xdr, dv=0,Xdo. (1.16)

The area element expanded by du and dv are dA = |duxdv| = |ul|v|sin 8drdo.
Recall that the induced metric on world-sheetis

u? u-v
Gop =0, X 05X = <V~u V2 ) . (1.17)
We see that
Vdet Gupdodr = \/u?v2 — (u-v)2dodr = \/u?v2(1 — cos? 0)
= |u||v|sinfdrdo = dA, (1.18)

which shows the consistency of the the area element. In Minkowski spacetime,
since the induced metric G,p is not positive, thus minus sign is introduced

dA = \/—det G pdodr. (1.19)
Now let us introduce the notation
XM =09, X", XM =9,XM (1.20)

The induced metric of world-sheetcan then be written as

X2 X.Xx/
Gop = (X.X’ o ) (1.21)

The Nambu-Goto action can be written as

Sna = *T/daz\/(X SX7)2 - X2X7? (1.22)




14 1.2. THE P-BRANE AND NAMBU-GOTO ACTION

The string tension 7T is the mass per unit length, it has a close relationship
with the universal Regge slop o and string scale I,
T 1 2oy (1.23)
2ra!’ ® ' '
Since the spacetime coordinates has dimension [X#] = [length] = [time], thus
the world-sheetcoordinates 7, o are dimensionless. From the dimension of T’
we see that [a] = [length]?, thus I5 has the unit of length. Length scale [ is
the natural length in string theory, and in some sense, it is the only parameter
of the string theory.

1.2.2 Symmetries of Nambu-Goto action

e The Nambu-Goto action has a global symmetry, Poincaré symmetry of
the spacetime: X* — A¥ XY + ¢, In world-sheet coordinates, this means
that Poincaré transformation A,, and c* do not depends on world-sheet
coordinates o®.

e Another symmetry is the reparameterization invariance, which is a gauge
symmetry. This reflects the fact that there is a redundancy of our descrip-
tion of the theory, viz., world-sheet coordinates have no physical meaning.

1.2.3 Equation of motion and boundary conditions

As we usually do in field theory, it is convenient for us to introduce the
momenta

pr— 9L _ —T(X XX - (XX, (1.24)
maxn \/(X CX7)2 - X2X72
Y (X - X)X, — (X2)X/

P = S = -T a L (1.25)

\/(X~X’)2 — X2x72
The equation of motion is
0: Py, +9,P, =0. (1.26)
It’s easily checked that, the equation of motion can be rewritten as
DoV — det GG*P s XH, (1.27)

where G is the inverse of the induced metric Gag,



CHAPTER 1. THE CLASSICAL BOSONIC STRING 15

GP =

L (X“XVX'X). (1.28)

CX xezixixz \-X'-X X X

The equation of motion looks terrible, since it is highly non-linear, so we
won’s solve it here but instead introduce some new equivalent action and
solve the new simplified equation of motion.

The boundary conditions are also very crucial in string theory. As for the
usual partial differential equations, there are several different types of bound-
ary conditions. But here we must ask what kind of boundary conditions are
physically meaningful. For closed string the boundary condition is periodicity
condition, i.e., X*(1,0 + m) = X#(7,0).

For open string, there two different types of boundary condition:

e Neumann boundary condition.
OsX* =0, ato=0,m. (1.29)

Since there is no restriction of the string endpoints dX* (¢ = 0,7), the
endpoints can move freely. As we will see later, this constraint means that
the endpoint of the string moves with speed of light.

e Dirichlet boundary condition.

0X* =0, ato=0,m. (1.30)

This means that the string endpoints lie at some fixed position in space,
ile., X¥(oc =0) = X} and X¥(oc =7) = X\

§1.3 The Polyakov action

The Nambu-Goto action is a straightforward generalization of the relativistic
point particle action. For the action of relativistic point particle, we have
seen that to overcome the shortcoming of the action that there is a square-
root which makes it difficult to do quantization and to include the massless
case, an equivalent action, einbein field action is introduced. Similarly, we can
construct an equivalent action to Nambu-Goto action, known as Polyakov ac-
tion!, or string sigma action, which eliminates the square-root at the expense
of introducing another field h,g. This new field hqp is a dynamical metric of
the world-sheet, its inverse matrix is denoted as h®?. The Polyakov action
reads

! The action is was discovered by Brink, Di Vecchia and Howe and by Deser and
Zumino, but Polyakov understood how to do path integral with this action, thus the
action is is named after him. The path integral will be discussed later in this lecture
note.
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T
‘ S=-3 /d%, /= det hogh®®0,X - 05X. (1.31)

Notice that we will frequently denote det h,g simply by h whenever there is
no risk to make ambiguity.

In fact, although the square-root is now eliminated, the action still looks
nasty because of its complexity. In this section, we will try to simplify the
analysis of the physics of this action using the its gauge symmetry. As you will
see, the final result is really satisfactory, the equation of motion becomes our
familiar wave equations plus some constraints given by energy-momentum
tensor.

1.3.1 The equation of motion

From simple calculation, the equation of motion for X* is
Oa (V= det hh*P9s X*) = 0, (1.32)

which has the same form as the equation of motion for Nambu-Goto action,
but now h,g is an independent field which has its own equation of motion.

To derive the equation of motion of the metic h®?, we need a formula
about the variation of the determinant of a matrix M:

SdetM = det Mtr(M M) = —det Mtr(MSM™1). (1.33)

Which you may have seen in relativity course, it can be prove in several
different ways, we leave it as an exercise.

Exercise 1.1. Prove that for a matrix M, the variation of its determinant is
of the following form

SdetM = det Mtr(M~'6M) = —det Mtr(MSM ™). (1.34)

The trick to remember the formula is to consider the 1 x 1 matrix M = x, in
this case d det M = dz.

Using the formula for the variation of the determinant, we have
1 1
§vV—deth = —5\/— det hhosdh™? = 5\/— det hh*PShep. (1.35)

Notice that there is no terms involving world-sheet derivatives of the field
h®? in the Polyakov action, thus the equation of motion is 6£/5h*? = 0.
We will see that this is equivalent to the vanishing of the energy-momentum
tensor Ty 3.
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Energy-momentum tensor

There are two different ways to calculate the energy-momentum tensor here.
The first one is the usual Noether current method which you may have been
familiar from the quantum field course. This is usually used for the situation
where the spacetime is flat, i.e., no gravity. Another way, usually appears
in general relativity course, is the Hilbert energy-momentum tensor. This is
usually used for the action involving gravity.

Since the Polyakov action contains the world-sheet gravity h®?, it is more
convenient to use the Hilbert energy-momentum tensor. By definition, the
Hilbert energy-momentum tensor is of the form

2 1 oL
Tog=———o—— 1.36
where \/ﬁ is introduced as a normalization factor.
Using the formula for variation of the determinant of a matrix, we obtain
oL T 1 —— po

This implies that hag = f(0)0.X - 08X = f(0)Gap with f(o) =2/(h"70,X -
0,X). Substituting the expression into the the equation of motion of X*, the
factor f(o) drops out, we obtain the equation of motion for Nambu-Goto
action.

The energy-momentum tensor reads

1
Top = 0aX - 05X — Shash?0,X -0, X. (1.38)

The equation of motion for A*? is equivalent to T, wg = 0.

1.3.2 Symmetries of the Polyakov action

There are three symmetries of the Polyakov action:

e Global Poincaré symmetry: X# — A* X" + A* and h,p remains un-
changed. Here, the term “global” means that A*,, A* do not depend on
the world-sheet coordinates.

e Local diffeomorphism of the world-sheet (or reparameterization invari-
ance). This is a gauge symmetry, which indicates that world-sheet co-
ordinates do not have physical meaning. Consider the transformation
o — o' = d'(0), under which, we have
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{Xwo) = X'y = XM(o"), (1.39)

hap(0) = hap(0') = §%% 855y (0).
Substituting them into the action, we find that the action remains un-
changed. In some situation, it will be convenient to work infinitesimally.
Consider the infinitesimal transformation o’ = ¢ — n(o) for some small
7(o). The transformations of the fields then become,

OXH (o) = n*0e XH
(0) =n%0a (1.40)

0hap(0) = Vang + Vana

where the covariant derivative is defined by Vang = dang — 1'%, g1 with
Christoffel symbol of the Levi-Civita connection associated to the world-
sheet metric given by the usual expression,

1
7= §hop (Oahpp + Oshpa — Ophag) - (1.41)

Weyl symmetry. Let us first give some comments about the name for con-
venience of our later use. Weyl symmetry or Weyl invariance is usually
defined for field theory which is coupled with a background metric g, .
For such theories, Weyl transformations are defined as a local rescaling
of the metric together with a transformation of the local operators. For
primary scalar operators O the transformation is

Weyl: {W) = 22(2)gju () (1.42)

O(z) — Q=20 (2)O0(x)

where (2(x) is an arbitrary non-vanishing function of background mani-
fold (in quantum field theory, the spacetime manifold, in string theory,
the world-sheet coordinate manifold), and Ae is the dimension the opera-
tor O. There is a closely related but somehow different notion, conformal
invariance, which will be discussed in detail in the following chapters. Ac-
tually, many authors use two nomenclatures to mean the same thing. Here,

we stress that conformal transformations are special Weyl transformations
such that the transformed metric is diffeomorphic to the original metric:

guu(x) — QQ(x)g’W(x)
O(z) = 2720 (2)O(x)

9y (T)

Conformal: { (1.43)

where g;,,, is diffeomorphic to g,

oxP 0x°
G (') = 5 == Gpo (). (1.44)
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At this stage, you may feel confused about these stuffs, we recommend you
to turn back to read these statements after you have read the conformal
field theory chapter.

For the Polyakov action, the scalar field X* is coupled with the world-
sheet metric hqg, the action has the Weyl symmetry. Under the Weyl
transformation

X"(o) = X" (o) (1.45)

while the metric transforms as
hap(o) = 22(0)hap = €2* D hag(0). (1.46)

It’s easy to check that the Polyakov action is invariant under this trans-
formation, since hqp is 2 X 2 matrix, the factor £2?(o) drops out, canceling
between /— det i and the inverse matrix h*?. Notice that this holds only
for 2d world-sheet manifold. The Weyl symmetry is a local gauge symme-
try, thus it can be used to gauge away the unphysical degrees of freedom
of the theory.

1.3.3 Conformal gauge

The Polyakov action looks nasty to deal with, so we expect to simplify the
action using the gauge symmetry. There are three local gauge symmetries: two
local diffeomorphisms and one Weyl symmetry. The action has D independent
variables X* and three independent variables hgg, ho1 = h1g, h11.

First, let us consider the two local diffeomorphism symmetries. They can
reduce the three independent variables of h,s into one independent vari-
ables. Specifically, we can choose the use the following gauge choice, known
as conformal gauge:

hap = €. (1.47)

We have another local gauge symmetry, Weyl symmetry, using which we
can remove the last independent component. By setting ¢ = 0, we can fix

the h,g completely as
-10
hag = < 0 1) (1.48)

We end up with a flat metric, which is, of course, a good news for us.

Actually such a flat worldsheet metric is only possible if there is no topo-
logical obstruction. This is the case when the worldsheet has a vanishing
Euler characteristic, e.g., a cylinder and a torus. In general, one can only
do this in a given coordinate patch (not a point), for a given world-sheet
manifold, we can do this in each given patch.

When a flat worldsheet metric is an allowed gauge choice (almost always
done in a given coordinate patch), the Polyakov action takes the simple form
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__Z 2 _qay . _Z 2 2 2
S, = 2/d08X 8aX—2/do(X X) (1.49)

Here it seems the world-sheet dynamical metric disappears, but you should
always remember that it actually exists and is set as flat metric, and the
equation of motion of the metric reflects in the constraint of vanishing energy-
momentum tensor.

The equation of motion for X* now becomes

90, X" =0, or, (02-09%)X"=0, (1.50)

which is nothing but the usual wave equation. This is of course not equivalent
to the original complex form of the equation of motion for X*. We need to
add the constraint that T,5 = 0. In our gauge choice, we have the following
constraint

T01:T10:X'X/:O and T00=T11= (X2+X/2> =0. (151)

N =

Let us take a close look at the constraints T, g3 = 0. The first constraint
To1 = Ty = X - X’ = 0 means that the o = const. line and the 7 = const.
in world-sheet are orthogonal to each other. The other ones will be discussed
use an example.

1.3.4 Boundary conditions

As we have pointed out before, for closed string, the boundary conditions
is X#(r,0 +m) = XH(1,0). For open strings, there are two basic boundary
conditions we can impose on endpoints of the string:

c=Oorm — OéﬁThiS is appropriate for

the free string endpoint. Since we have P} = 5557 = TX' . This kind
of boundary condition means that there is no momentum flow off of the
endpoints of the string.

) ]gicrichlet boundary condition §.X "|U:0 or » OF equivalently PT|0—:0 orw =

X“ o=0orm
time.

e Neumann boundary condition 0, X “|

= 0. This means that the ends of the string are fixed in space-

Although, we learn from partial differential equation course that that are
many other boundary conditions we can impose on the wave equations, how-
ever, these boundary conditions are of great importance in string theory, we
won’t discuss them here.
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8§1.4 Mode expansions of the string

In the last section, we have seen that the equations of motion for Polyakov
action in flat gauge are

for X* D2XH —92XH =0, (1.52)
1 .

for R Too = Tiy = 5(X2 + X% =0, (1.53)

Tor =Tio=X-X"=0. (1.54)

We will treat these two kind of constraints separately. Firstly, we give the
general solution of (1.52) in the Fourier expansion form with coefficient un-
dermined, which is known as mode expansion or oscillator expansion and the
constraints (1.53) and (1.54), known as Virasoro constraints , are added later
to the Fourier coefficients of the general solution.

As you may have seen before, the wave equation 92X* — 92X* = 0 can
be solved with d’Alembert method by introducing a new kind of variables
ot =7+ 0 and 0~ = 7 — o, which, in string theory, are known as world-
sheet light-cone coordinates. In terms of light-cone coordinates, we have

0y = 5(0: +0,), 0= (0.~ ). (1.55)
and the equation of motion simply read
040_X* =0. (1.56)
The general solution of the equation is
XHt(r,0) = Xp(o7)+ XK (oT), (1.57)

where X/ (07) and X/ (07) are two arbitrary functions which corresponds
to the right-moving waves and left-moving waves respectively, they can be
expressed in the following general form

B 2ph il akt .
Xp(o™) = % + Sg o7+ %S ?’@ —iko (1.58)
k0
ah 12 ily — &
Xt =5+ %tﬁ Y —tho " (1.59)
k0

The o) and &) are arbitrary Fourier expansion coefficients. Since the field
XH(r,0) must be real, z#, p*, and p* must also be real and we may also
derive the following reality condition for the of and &:

()" =a", and (af)" =a", (1.60)
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The expression is well-designed for the convenience of the quantization, as
you will see in the next chapter.

To determine the exact solution, we must add the boundary condition
constraints. We will discuss separately the cases for closed string, viz. the pe-
riodic boundary conditions; and the open string with (i) Neumann boundary
conditions; (ii) Dirichlet boundary conditions; and (iii) mixed boundary con-
ditions. The general solution takes a well-designed form of Fourier expansion
such that it is convenient for quantization, this kind of expansions are know
as mode expansions or oscillator expansions.

Before we start, let us first take a quick aside to give a short comment
about the convention of differential form and small displacement. We will
take the convention that dxdy := dx A dy. This means drdo # dodr. And
sometimes we will also use the notation dxdy to mean dx®dy, e.g., for metric
d’s = gudxtdz” = g,,dz* ® dz¥. Rigorously speaking, italic ‘d’ means
an infinitesimal displacement, e.g., d?s and romanic ‘d’ means a differential
form. But we will take the risk to neglect this difference hereinafter as many
authors do, each time when you meet it, stop and think to make the meaning
clear. Here for light-cone coordinates, the expression may do™do~ will be
used to mean dot A do~ and doTdo~ will be used to mean dot ® o.
Similarly for other coordinates transforms. The metric in world-sheet light-
cone coordinates is

- 0o -1 - 0 —2
hag = ( 2), ho? = ( ) (1.61)
= -1 0 -2 0

Thus, we have 0, = —0~ /2 and 0_ = —0g /2.

1.4.1 Closed string case

For the closed string, X#(7,0+m) = X*(7,0), since it’s periodic, if we impose
the condition on the general solution (1.58) and (1.59), we must have k € 27
and p* = p”. By redefining the o} and &}, we obtain the following mode
expansion for closed string:

1, 1 1 1 e -
Xp(o7) = 5:1:“ 4 §ls2p“a_ 4 5215 Z ﬁaﬁje 2 , (1.62)
n#0
gty Lop o Lzpuot o L 1 spg2ino™
Xi(o™m) = 3% + §lsp o’ + 57/[5 Z e . (1.63)

n#0
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Here z* and p* are center-of-mass position and momentum as we will
check later. The requirement that X3 (0~) and X} (07) are real implies that
x# and p* are real and

al, = (ak)*, at, = (ak)". (1.64)

—-n n

We also recall here that [2 = 2o’ and T = 1/(2ma/). If we set off = alf =
lsp* /2, the derivatives of the mode expansion take the form

O_Xp(o7) =1y ake (1.65)
mEeEZ

O XP(0T) =1, Y akem” (1.66)
meZ

From the above equalities, the derivatives with respect to 7 and ¢ can easily
be obtained. Recall that 0, = 04 + 0_ and 0, = 01 — 0_, we have

XM =0, X o) +0-Xk(o7) (1.67)
M =0, XHoM) —0_X}(o7). (1.68)

Now let us briefly demonstrate that x* and p* are center-of-mass position
and momentum. Consider X*(7,0) = X%(0™)+ X/ (o), the center-of-mass
position is

1 T
XH(r) = ;/ do X" (1,0) = " + 2phr. (1.69)
0
Thus, z* is the center of mass at the initial time 7 = 0 and is moving as a free
particle with velocity [2p*. Since the momentum density is P* = 6L/ 6X =

TX*, the center-of-mass momentum is

+

/ dUX“—Tl/ da (ate™2ma 1 Ghe2inoT)
nez

ll( +ab) = pyu. (1.70)

Thus the center-of-mass momentum is a constant p*, which coincide with the
fact that the string is moving freely.

Poisson bracket

The canonical quantization of bosonic string is just a procedure to replace
the classical Poisson bracket to quantum bracket. Now let us calculate the
Poisson bracket for closed string mode expansion. For the X* field and the
corresponding momentum P* = TX* of Polyakov action in flat (or confor-
mal) gauge, we have the following equal-7 Poisson bracket
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(XH(1,0), X" (1,0")]p = [P*(7,0), P (1,0")]pp =0, (1.71)
[X/J(T’ U)ﬂ PV(Tﬂ J/)]PB = T[XH(T7 U)v XV(Ta U,)}PB = 77“1/6(0— - OJ)' (172)
How does this reflect in the mode expansion coefficients? Using Eqs. (1.65)-

(1.68) and by taking derivatives with respect to o, ¢’, the following equations
arise

[XH(1,0), X" (1,0")|ps = [X*(7,0), X" (1,0")]p = 0, (1.73)
[X*(7,0), X" (7,0")|pB = %77’“’%5(0 —d'). (1.74)

From the above equations, the following Poisson brackets are obtained easily

[aiXM(Tv U)) ai’XU(T7 a/)]PB = iZTg'uydi(S(U, 0/)7 (175)
(o}
[0+ X" (1,0),04 X" (1,0")|pp = 0. (1.76)

Then from above Poisson brackets and expanding the Dirac delta function

as 6(c—o')=1% e~ 2i(e=9") " we can compare two sides to obtain the

B

Poisson brackets for the mode expansion coefficients.

[ah arlp = (&4, &y lpe = — 1m0 Omtn0, (
[ah,,anlpB =0, m,neZ, (
[z, 2¥]p = [p*,p"]pB = 0, [z, p"]pB =", (1.79
(

[z", &y ]pB = [p", &y lpe = 0 = [2", o} ]p = [p", an]pB, 7 # 0.

Exercise 1.2. Give a detailed proof of the Poisson brackets (1.77)-(1.78) for
mode expansion coefficients from the the Poisson brackets (1.71) and (1.72)
involve only X* and P".

Virasoro modes

Now let us consider the constraints (1.53) and (1.54) imposed by the equation
of motion of h*?. In the world-sheet light-cone coordinate, they becomes

T =(0:X)*=(0.X1)*=0, T__=(0-X)>=(0_Xp)*=0. (1.81)

It’s obvious that they are equivalent to (1.53) and (1.54). And the other two
components vanish automatically,
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1~ -
T, =0,X-0_X — §h+,haﬂaax 05X
1 1
Similarly for T_.
From the light-cone coordinates derivatives of the mode expansions (1.65)

and (1.66), we obtain

T _ = (an)2 = ls Z Qg - Oém€_2i(m+k)o-7

k,m€eZ
— ls Z oy - ame—%nof
m,ne”
_ 2[2 L —2ino~ _ 0 1.83
- S n€ - ( . )
nez

where we have introduced a new term, called Virasoro generators

1 I 2ino~
Ln = 5 nganfm c Qo = m/o T _e o do. (184>

Similarly, from the left moving modes contribution T’ |, we introduce

[ 1 A ~ 1 " inot
Ly = 5 Z On—m * Oy = m/o T—&-+€2 do. (1.85)
meEZ
They satisfy reality condition
Ly=L ., Ly=L,. (1.86)

The equation of motion for h®? now can be expressed using the Virasoro
generators as ~
L,=L,=0, neZ. (1.87)

From the Poisson brackets for the oscillator modes, we can derive the
Poisson brackets for the Virasoro generators. They form an algebra known
as the classical Virasoro algebra:

=
h

m>s

nlpB = —i(m = n)Lmin (1.88)

I

[l

m> n]PB = _i(m - n)Lm+n (189)

[
[Lim, Ln]lps =0 (1.90)
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Exercise 1.3. Prove the above Poisson brackets form the Poisson brackets
of the mode expansion coefficients.

Hamiltonian and energy-momentum tensor

1.4.2 Open string case

Let us now discuss the open string case. As we have pointed out, there are
three kind of combination of the boundary conditions we can impose on two
ends of the string.

Neumann-Neumann (NN) boundary condition

For the Neumann-Neumann (NN) boundary condition, we impose Neumann
boundary condition on both ends of the string. Consider the general solution
(1.58) and (1.59),

12 _ ily 1 L
XH =k + g(p“of +prot) + 5 Z %(aﬁe*l’w + aje ”“’Jr). (1.91)
k0

Taking the derivative with respect to o, we have

Do X =(8; — 0_) (X1 + XP)

152 ~ ls ~ —ikot —iko ™

S @ =)+ EZ(QZG T —aje™ ), (1.92)
k0

For 0 =0, 0,X* =0
lsg ~ s lS ~ wy  —ikt
S = )+§Z(ak—ak)e =0 (1.93)
k0
implies that p* = p and &}, = ;. Then, for o0 =7, 9, X" =0
lS —ikT (  —ikT ikm
52&%6 FT(emthm _ gikmy = (1.94)
k£0

implies that k € Z. In summary, we have the following mode expansion
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1 .
NN: X* =zt + 2phr + il Z Eaﬁe_"”cos(na) (1.95)
n#0

If we set aff = lsp* (note there is a 1/2 difference with the closed string
convention), we have

I
X" =23 ale=ine™, (1.96)
neZ

The center-of-mass position is

1 T
xh(r) = ;/0 do Xt =z + lgp”T (1.97)

and the center-of-mass momentum is

ph(T) = T/ do X = pt. (1.98)
0

Dirichlet-Dirichlet (DD) boundary condition

In the study of Dp-brane, we may also encounter the Dirichlet-Dirichlet (DD)
boundary, for which two ends of the string are fixed in spacetime.
Consider

ZS2 5 ZS ~p —ikot —iko™
0 XM = S + ")+ > (ahe * +afem ) (1.99)
k0
Imposing the Dirichlet boundary condition at ¢ = 0, we have
Pt =—p", of =—ajp. (1.100)

Then for o = 7, the boundary condition imply that k£ € Z. Finally, the mode
expansion for DD boundary condition is (where we have redefinee o as a#
and wt = pH)

1 .
XH =gt 4 Pwto + 1, g —ake " sin(no). (1.101)
n
n#0

Notice that this expansion is completely different with the NN case and
closed string case in its physical essence. One importance thing is no mo-
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mentum is allowed for DD open string, only winding is allowed. Therefore,
we have chosen the notation w* in our mode expansion. The two ends are
fixed at X#(o = 0) = 2# and XH(o = 7) = z# + [2whr, wee see that w
characterize the distance between two ends of the string.

Exercise 1.4. Calculate the center-of-mass position and center-of-mass mo-
mentum of the DD open string.

Dirichlet-Neumann (DN) boundary condition
The final case we will discuss is a combination of the Dirichlet and Neu-

mann (DN) boundary conditions. The Dirichlet boundary condition at o = 0
implies that

pr=—pt o = —ay. (1.102)
Thus we have
Xt =gl +12p'o + s > l(a“e—ik“’ +ateihh) (1.103)
s D) k k k ’
k#0

and its o-derivative is

O XH = 125" +il, Y alie™* cos(ko). (1.104)
k#£0

Imposing the Neumann boundary condition at ¢ = m, we obtain

2P +ily Y | dle™"7 cos(km) = 0, (1.105)
k0
which implies that
1
Pr=pt=0, kel+. (1.106)

Therefore the mode expansion for DN boundary condition is (we redefine o,
~ 1
as &},)

1
XH =gk 4+, Z Eaﬁe T gin(ko). (1.107)
kezZ+1

This is an open string with an given direction, the ¢ = 0 end is fixed in
spacetime and the ¢ = 7 end is free to move in spacetime.

Exercise 1.5. Calculate the center-of-mass position and center-of-mass mo-
mentum of the DN open string.



Chapter 2
Quantization of the bosonic string

The career of a young theoretical
physicist consists of treating the
harmonic oscillator in
ever-increasing levels of
abstraction.

Sidney Coleman

In this chapter, we will discuss how to quantize the string.

§2.1 Canonical quantization

Our goal is to quantize D scalar fields X* governed by the Polyakov action
in conformal gauge. The equation of motion is d_0; X* = 0. The constraint
from the vanishing of energy-momentum tensor is

T,, = T++ - O, (21)
or equivalent, they are expressed by classical Virasoro generators
L,=0L,=0, (2.2)

sicne L,, and L,, are Fourier expansion coefficient of the 7__ and T, .

The canonical way for quantization is promoting the classical fields into
operators and by replacing the Poisson brackets into quantum brackets ac-
cording to

[', '}PB - _i['7 ] (2'3)

Thus, for fields X* and its conjugate momentum P* we have

29
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[X*(1,0), X" (1,0")] = [P*(,0),P"(1,0")] =0, (2.4)
[X*(1,0),P"(1,0")] =" 6(0c — o). (2.5)

As we will see, this kind of quantization scheme makes the Lorentz invariance
manifest, but there will be some states with negative norm.

Using the mode expansion of X#, we can also promote z*, p* and o and
& into operators. From the commutation relation of X* and P¥, we obtain
the commutation relations (for closed string)?

[ah  ar] = [ah , ar] = mn* dmtn.0, (2.6)
(&, an] =0, m,neZ, (2.7)
and
[z, 2"] = [p",p"] = 0, [z#, p"] = in"”, (2.8)
[xli7dm = [P“»dg] =0= [‘ruvalrlz] = Lp‘ﬂa;’l], n # 0. (2'9)

For open string commutation relations remain the same, but a# modes do not
appear. The commutation relations for z# and p” are expected for operators
governing the position and momentum of center of mass of the string. The o
and &Y are in fact harmonic oscillator creation and and annihilation operator
in disguise. Let’s now try to make it more clear.

2.1.1 Fock space

The mode expansion coeflicient operator o and &, can be regarded as the
creation and annihilation operator in the following way

Qn ot %on
N/

Here we have omitted the p label. For closed string, a* part can be trans-
lated into creation and annihilation operators in the same way. From the
commutation relation of o, we see that [a,,al ] = Om,n Which is our famil-

apn, = for n > 0. (2.10)

il
iar commutator for creation and annihilation operator.

With the creation and annihilation operators in hand, we can build the
Fock space by giving the vacuum state of string |0). Notice that the creation
operator do not contain the zero mode coefficient aff = Ilsp*/2, thus the
the vacuum state should carry another quantum number k* which is the
eigenvalue of p#, we denote it as |0; k#). The annihilation operator acting on
vacuum state get zero value

1 We can also obtain the commutation relation by replacing the classical Poisson
brackets into quantum bracket [-,-]Jpg — —i[-,-] from their classical commutation
relation.



CHAPTER 2. QUANTIZATION OF THE BOSONIC STRING 31

ab|0; k*) = ak0; k%) =0, forn > 0. (2.11)

The zero mode coefficient part is given equivalently by the momentum oper-
ator
pH0; k7Y = kH(0; k*). (2.12)

The Fock space can then be built by acting with creation operator a¥ and
ar, with n < 0. Each state in Fock space is an excited state of the string.
The generic states are of the form

(al,, ) (al,, (0 k"), for my, - mg > 0. (2.13)

As in quantum field theory, we introduce the normal order of a series of
product of cip, ++ Qi 88 1 Gy ** + Quy,, ¢ for which the creation operators are
on the left of the annihilation operators, and we make a further convention
that all subscripts are arranged in order from small to large. For example

Q51030003 i— (30 _1g(¥3Q¢5. (214)

The normal order will be useful later in expression of physical operators using
mode coeflicients.

Ghost: negative-norm states

The Fock space we constructed has a problem, viz., some states in the space
have negative norm. The reason is that the commutation relation involving
the time component filed X° has a minus sign:

[ah,, (@)] = [a5,, (@)1 = n™mbn = —mby.n, (2.15)
note that we have used (a2)" =a’, and (a2)" =a?%,,.
Consider the norm of states a® ,,|0; k*) with m > 0,

a2 103 K#) | = (03 k* o, a2, |03 K#) = (05 k[ (=m + a2, 0,05 ) = —m.

(2.16)
In fact, whenever there are odd number of timelike oscillator excited, the
norm of the states is negative. The states with negative norm is referred to
as ghost. Physically speaking, to make the sense of the theory, we must make
sure that ghosts can not be produced by any physical process.

2.1.2 Virasoro algebra and physical states

Now let us consider how to add the constraint L,, = in = 0. It’s sufficient to
make the constraint that, for arbitrary physical states |¢) and |¢), we have
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(Y| Lp|¢) =0, (Y|Ln|¢) =0, forn > 0. (2.17)

where n > 0 is set because of L_,, = LI, n < 0 conditions are guaranteed by
n > 0 condition. In summary, for physical states |¢), we have

Ln|¢) = Ln|¢) = 0. (2.18)

Now the question is how to define operators L,, and L,, and what constraint
we should impose for Ly. We can naively guess that by directly promoting
the «, in the classical expression of L,

L, =

DN | =

i Qe * Oy - (2.19)

Unfortunately, this does not work. As in quantum field theory, we must
normal-order the product of operators, thus the Virasoro generator can be
defined as

Exercise 2.1. Prove th%t for t}}e normal-ordering definition of L, and [~/n,
we have L_,, = L}, and L_, = L}.

From the definition, for n # 0, terms in expression of L, are always com-
mutes, (o, of_ 1 = mn"0,0 = 0, we can change the order arbitrarily.

Thus normal order definition works for our goal to set constraint L, = 0.
However, for n = 0, the order ambiguity issue arises,

1 =X 1 =
Ly = 3 Z SOy Qg i= 5(040)2 + Z QO * Oy (2.21)
m=00 m=1
where [at,a” ] = mn*Ny_m0, they do not always commute, when we

try to promote classical expression of Lg into the quantum normal-ordering
express, some extra constant term arise. This results in the fact that to make
the quantum analogue of classical constraint Ly = 0, we must introduce a
parameter a, such that for physical state |¢),

(Lo - a)lg) = 0. (2.22)

Similar for Lo.
In summary, the physical state conditions for closed string read
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(Lo—a)|¢) = (Lo —a) |§) =0 (2.23)
Lin>0l¢) = Lm>ol¢) = 0 (2.24)

For open string, L, part vanishes. The condition (2.23) is often called
mass-shell condition.

Mass-shell condition
As we have discussed for classical string mode expansion, Ly and Lo play

important roles in determining the spectrum of string. Recall that oy =
ab = lsp" /2, we see that

4 4
—MQZP“P;L: Z—QOéO'CVOZ l—2a0'a0
2 2.

= JOZO s = JOZO * Q. (225)

Using the expression of Lo and Lo and the physical state condition Lo—a = 0
and Ly — a = 0, we see that

4 > 4 — _
M? = a(—aJr Y amcam) = J(—a+ D> g ). (2:26)
m=1 m=1

We can introduce the level operator (or number operator, although there is a
/m difference in each term of the summation from the true number operator)

N = i Q- Oy N = i P, T (2.27)
m=1 m=1

The condition that for physical state N = N is known as level matching
condition. The mass operator and level operator are related by

M? = —(N —a) = J(N—a). (2.28)

Virasoro algebra

The quantum expression of Virasoro generators satisfy the commutation re-

lation

C
[Lony L] = (M —n) Ly + — 2

-1 2.2

m(m
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where ¢ = D is the spacetime dimension. This can be proved using the
commutation relation of a/. Similar for L,,. Here c is called central charge,
which is absent in classical commutation relations. The existence the central
charge is a quantum effect, the process to map classical Virasoro algebra
to quantum Virasoro algebra is known as central extension, which will be
discussed later in the chapter of discussion of conformal field theory in this
note.

Exercise 2.2. Prove the quantum Virasoro comutation relations (2.29) .

Lorentz invariance

2.1.3 Ghost elimination

The ghost state is unphysical, we must eliminate ghost states from our theory.
As we will see later, by properly choosing a and central charge ¢ = D, we
can get rid of these negative-norm states. In general, physical states can have,
positive, negative or zero norms. Similar for unphysical state. We will consider
a sequence of zero-norm states in the Fock space we constructed before, and
figure out in what values of a and ¢ = D, these zero-norm states become
physical. As shown in Figure 2.1, when the left ribbon region of unphysical
zero-norm states and the right ribbon region of physical zero-norm states
coincide, the negative norm state region vanishes. Notice that this is just a
non-rigorous but inspiring argument, a more rigorous argument is presented
in the next section using light-cone quantization where you will see that to
preserve the conformal symmetry of the theory, we must take special value of
a and D. To achieve our goal here, we need introduce the notion of spurious
state.

Spurious state

A state |1b) in Fock space is called spurious if it satisfy the mass-shell condition
(here for simplicity, we consider the open string case, the closed string case
is similar)

(Lo —a) [4) = 0, (2.30)

and is orthogonal to all physical states |¢), viz.,
(¥|¢) = 0,V physical state |@). (2.31)

The set of all spurious states can be regarded as vacuum state, since vacuum
state is orthogonal to all physical state.
Let us define a series of states |x,) by
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unphysical states physical states
positive norm

negative
norm

Zero: norm

Fig. 2.1 Illustration of spurious state argument of the critical dimension D = 26
and a = 1. Different regions represent different sets of states.

(Lo —a+n)|xn) =0. (2.32)

Thus |xy,) is the eigenstate of Ly with eigenvalue a —n. For each |x,,), there is
a corresponding spurious state |¢,) = L_,|xn) with n > 0, it’s obvious that
for arbitrary physical state |¢), (¢|¢,) = 0. For the mass-shell condition, we
have

(Lo — a)|[tn) =(LoL—n|xn) — aL_n|xn))
= (([L07 L—TL] + L—TLLO)|XTL> - aL—n|Xn>)
=nL_p|xn) + L_n(a —n)|xn) — aL_pn|xn) = 0. (2.33)

Consider an eigenstate |h) of Lo, Lo|h) = h|h), the state L_,|h) is also an
eigenstate of Ly with eigenvalue h + n.
LoL_n|h) =([Lo, L—n] + L—nLo)|h)
=(n+ h)L_,|h). (2.34)
Thus L_,, raises the eigenvalue of Ly by amount of n, this implies that for

[Xm)y Ln|xm) is in fact the state |Xm—n). Since LoL_p|xm) = (@ — (m —

n))L_pn|Xm)-
In general, a spurious state is of the form

|1/}> = Z Cn‘¢n> = Z CnL—n|Xn>7 (235)
n=1 n=1

where ¢,, are coefficients. Notice that
L s=[L_1,Lo),L_4=[L_1,L_35]/2,--- (2.36)

all L_,, with n > 2 can be expressed as a combination of L_; and L_o
with equal total level (the number of L_; in product is k& and the number
L_5 in product is I, the level is defined as k + 2[). For example, L_3 =
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L_1L_o— L _oL_1, each term in summation if of total level 3. Recall that
L_1xn) = |Xn-1) and L_2|xn) = [Xn-2),

L_3|x3) =(L_1L_2 — L_oL_1)|x3)
=L_1|x1) + L-2|x2)
=|11) + [1h2). (2.37)

Similarly, for all n > 2, we have

[¥n) = Lon|xn) ~ [{1) + [12). (2.38)

Therefore, a general spurious state is of the form (omitting the overall phase
factor)

[V) = y|Y1) +|2) = YL _1|x1) + L_2|x2) = vYL_1L_1|x2) + L_2|x2). (2.39)

If a spurious state |¢) is physical, then it must be orthogonal to itself, thus
its norm is zero. We now determined the value of @ and ¢ = D by requiring
the spurious state to be physical, this seems very artificial, but at this stage,
we can only treat at this level. This rigorous discussion is given in the chapter
of conformal field theory.

Determining a =1 and ¢ = D = 26

To determine normal ordering constant a, consider the spurious state [1);) =
L_1|x1). Demanding that |¢1) is physical means

0= Ly|¢1) = LinL-1]x1), (2.40)

the mass-shell condition is automatically satisfied since 17 is a spurious state.
Consider the L case, L1L_4

0= Li|tp1) = LiL_1|x1) = (2Lo + L1 L1)[x1)
=2(a —1)x1) (2.41)

which implies that a = 1. Notice that here we have used the condition
L., |x1) =0 for m > 0.

In order to determine the value of central charge ¢ = D, let us consider
the general spurious state in equation (2.39),

|Y) =~yL_1L_1|x2) + La|x2)- (2.42)

We have Lo|xz2) = (a — 2)|x2) and L, |x2) = 0 for m > 0. If |[¢)) is physical,
we have

L) = 0,¥m > 0. (2.43)
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In particular, for L; we have
[Ll, L o+ ’}/L,lL,l] = (3 + 2’7)L,1 +4vL_1 Ly, (244)
which implies that

0= Li|¢) =Li(L-2+~vL-1L_1)|x2)
=[L1,L_o+~yL_1L_1]|x2) + (L_2 +~vL_1L_1)L1|x2)
=((3+2y)L_1 +4vL_1Lo) |x2)-
=(3+27)L_1[x2) +4yL-1(a — 2)[x2)
=(3 = 27)[x2), (2.45)

where we have used a = 1. Thus, to ensure |1)) a physical state, we must have
~v = 2/3. We now have a state

) = (Lo + §L_1L_1)|XQ>, (2.46)

the higher level physical state condition still need to be added. Let us con-
sider, in particular Ls|y) = 0.

0=Ly|)) = Lo(L_o + %L—1L—1)|X2>
Lo, La + 2L L]l + (Ls + 2La L) Do)
=[Ly, L_o + §L71L71HX2>
~(-13+ ). (247

This implies ¢ = D = 26.

§2.2 Light-cone gauge quantization

Let us now introduce another approach to quantizing the bosonic string,
known as light-cone gauge quantization. Recall that the Polyakov action has
three gauge symmetries, two local diffeomorphism symmetries and one Weyl
symmetry. Using these symmetries, we can set the metric as

by choosing the appropriate gauge, i.e.,

5(0)eDIff 94(5),  9EWeyl (2.49)

af Nap Nap-
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However, the gauge transformations which give the above flat metric are
not unique. Typical examples are the local diffeomorphisms (in light-cone
coordinates)

ot —at(c"), o =5 (o). (2.50)

Both functions only involve one variable. You can check that, under this
transformation, the metric transforms as

Nas = e2¢(”)naﬁ. (2.51)

Then using the Weyl rescaling symmetry, we obtain the flat metric. This
means that we have not completely fix the gauge by choosing the flat metric,
there are still some gauge symmetries surviving, these gauge symmetries can
be regarded as a measure-zero subset of all gauge symmetries. These surviving
gauge symmetries can be fixed by the light-cone gauge.

As we known from gauge field theory that local gauge symmetry can be
used to reduce the unphysical degrees of freedom. Let’s now count how many
degrees of freedom we have. The equation of motion of X* tells us that
XH = X (o") + Xi(07) where X4 and X% are two arbitrary functions,
thus we have 2D degrees of freedom in total. Now two constraints 7__ =
(0-X%)? = 0 and T4y = (04 X4)? = 0 reduce the degrees of freedom into
2(D — 1). The gauge transformations (2.50) reduce 2 unphysical degrees of
freedom, finally we have D —2 independent left movers and D —2 independent
right movers. As you will see, which can be chosen as i =1,--- ,D — 2, and
refer to them as transverse fields.

2.2.1 Light-cone gauge

In counterpoint to the world-sheet light-cone coordinates, we introduce the
following spacetime ligh-tcone coordinates

1
X+ = \/;(XO + xP~1). (2.52)
The spacetime indices then become y = +,—,1,--- ;D — 2.
In light-cone coordinates, the the spacetime displacement becomes

D—2
ds? = 7, dX"dX" = —dXTdX~ —dX'dX" + Z dXidx’. (2.53)
i=1

This means that the light-cone metric reads
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0 -1
-1 0

flul/ = ﬁuz/ = 1 s (254)

the indices are raised and lowered with X, = —X~ and X_ = —X*
and X? = X;. The inner product of two spacetime vectors reads V - U =
fuVPUY = =VTU~ — UTV~ 4 VU,. Hereinafter, we take the convention
that the contraction of space indices in light-cone coordinates are running
through 1 to D — 2.

The equation of motion and the vanishing of energy-momentum tensor in
light-cone coordinates (for indices +, —) read

D,0_X*=0; (2.55)
T,y =-20,X"0, X" +0,X'0,X; =0, (2.56)
T _=-20_XY0_X +0_X'0_X;=0. (2.57)

Let us first look at the solution of X+ = X (oF) + X}t (c7), for closed
string, in the Fourier expansion form,

1 1 ils 1 9ino—
Xi(o7) = §I+ + ilfpﬂf + 5 > ﬁa:{e Zino ™ (2.58)
n#0
Ly 1 1y il 1.4 oot
X/ (o ):§x +§lsp o +72Eane . (2.59)
n#0

Using the freedom of reparameterization invariance, we can change the vari-
able ot — % (0%) such that the oscillator terms vanish in these new vari-
ables, this is actually a choice of gauge, known as light-cone gauge. Dropping
the tilde symbol of these new variables, we obtain that

1 1 1 1
Xt(o™) = §x+ + §l3p o7, Xf(cT)= §a:+ + §l§p+a+. (2.60)
In summary, the light-cone gauge reads
Xt =zt +2ptr. ‘ (2.61)

This means that, in light-cone gauge, X is a timelike coordinates. Notice
that this choice picks out a particular space coordinate and a particular time
coordinate, thus the Lorentz symmetry is not manifest anymore. And it’s
obvious that when a massless string moving in X~ direction with p* = 0,
this choice does not work anymore, we can choose the light-cone gauge for
X~
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Solving X~ of closed string

Now let us solve X~ for closed string, we take the usual ansatz solution
X~ =X, (6%)+ X (07). Consider the constraint (2.56),

20, X 0. X1 =0,X'0, Xy, (2.62)

using the light-cone gauge (2.61), we obtain

0,X} = 50, X'0, X, (2.63)

l2

Similarly, from constraint (2.57), we obtain
0_Xp = ) +6 X'0_X;. (2.64)

From these equations we see that the X~ is determined in terms of other
spatial fields X* withi=1,---,D — 2.

Now let us consider the mode expansion of X~ and X? of closed string,
here for convenience we write down the explicit form for X~

1 1 il
Xplo)=ca +zBp o +— : 047672”“7 ) (2.65)
2 2 2 n
n#0
1
X; (o) = 57+ —l2 - ++ = E —“ ~2ino (2.66)
n;éO

See Egs. (1.62) and (1.63) for X% and X} .
By introducing ay = &, = lsp~ /2, the light-cone derivatives are

0-Xplom)=1s) e 7, (2.67)
nez

O Xp (o) =1 > ape 2o’ (2.68)
nez

Substituting them and the light-cone derivatives of X* into Egs. (2.63) and
(2.64) and comparing two sides, we obtain

. Q, = + Z Z Ol‘ ai ’
closed string: { Lpt omel Ziml Tnmmm

" D2 i i (2.69)
an = Sp+ ZmEZZ n m m

Note that hereinafter, whenever necessary, we will write the summation over
i=1,---,D — 2 explicitly. We thus see that light-cone gauge (2.61) renders
the constraints of the vanishing of energy momentum tensor trivial.
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Let us now consider the mass formula for the string, this corresponds to
the the special case of Eq. (2.69), namely, oy = &, = lsp~ /2 and o) = &) =
lsp"/2. From the expression of a; and &g, we obtain

9 D—-2 1 D-2
P =5 ) D alpan =5 D ) al,dn, (2.70)
S mezZ i=1 S mezZ i=1

From these equations, we obtain the classical mass formula (level matching
condition)

D—-2
M? =2pTp” =Y p'p’
=1

i=

4 D—-2 4 D—-2
5 3 D alnal - 3 ael
5 mez i=1 S 4=1
4 D—-2 4 D—-2
=5 o> atb,ak, - 2 D @i (2.71)
5 mezZ i=1 S =1

After simplification, we have (recall I2 = 2o/, and here we have neglected the
ordering ambiguity)

D—2
4 o o
closed string: M? = o g E al,, Q= — al Gy, (2.72)

m>0 i=1 m>0 i=1

The difference between this and the old mass foumula is that, here the con-
traction of spacetime indices only runs through i = 1,--- , D — 2. As before,
we can introduce the level

-2 oo
N = Za’;naﬁl (2.73)

=1 n=1

which, in quantized form, is the level operator of the string.

Solving X~ for open string

Let’s now solve X~ for open string with Neuman-Neuman boundary condi-
tion. Since the procedure is completely the same as we have done for closed
string, we only present the results here. The mode expansion of X~ for open
string is

1 .

_ _ 2 _ . _
X =a"+1p T+le§)ﬁa”e T cosno. (2.74)

n
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Using the constraint of energy momentum tensor, we obtain

D—2
. _ 1 ; ;
open string: «a, = T E . E 1 QO (2.75)
mes 1=

Then using the zero mode aoi = IspT, af = I;p® for open string, the mass
formula is obtained

D—2
1 S
open string: M2:—/E E al an.. (2.76)
a

m>0 i=1

2.2.2 Light-cone gauge quantization

We have now obtained the most general solution of the open and closed string,
which is described in terms of transverse oscillator modes o, (together with
@t for closed string), and the zero modes which describing the center of mass
and momentum of the string, %, p*, ' and p’, the oscillator modes for
X1 are zero, and the oscillator modes for X~ are determined by transverse
oscillator modes. To quantize, we need impose the commutations relations.
For transverse modes, it is obvious (actually it is not)

(o, 7] = 61,
; . . . » 2.77
(o ] = [, 6] = 884 mo. (2.77)

The special case is the commutators for & and p*. We give some not rigorous
argument, since
L a¥ gDl L P04 pP-1

r— = Ta \/5 ;
1 D*l}

using the commutator of [2°,p°] = —i and [zP~1,p

(2.78)

= i, we obtain
[$_7p+] = —1, [x+ap_] = —i. (279)

Here the derivation is based on the commutator for the field X# and P¥, we
must stress that this is not rigorous.

From the classical expression of «;; in Eq. (2.75), when promoting it into an
operator, there will be ordering ambiguity for o, because of the commutators
[af o’ ] = nn' and [ai,a’ ] = ny. As for covariant quantization, we
introduce a constant a to write the operators in normal order.
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3

- _ _2
Qny = lspt 2 ZmGZ Zz 1 O[ —mQ®m — a(sn’o ’
D— 2 ~»L ~q

(2.80)
n TapT \ 2 ZmEZ Z Ay mam aé?’ho

closed string:

joN
I

For the open string, the left movers vanish, all other commutators remain
the same as the closed string case, thus we have

open string: «,, = o < Z Z ol o al —aén,o> . (2.81)

meZ 1=1

Now, let’s consider the Fock space, the vacuum state is |0; &) such that
pH0; kM) = kH|0s kM), ol |0;p) = all0;p) =0 for n>0.  (2.82)

The Fock space is built by acting creation operators o’ ,, and o’ , with n > 0
over the vacuum state. Note that in light-cone formalism, the index 7 only
runs through 1,--- , D —2, this makes the Fock space positive definite. There
is no worry about the ghost.

2.2.3 Mass-shell condition

Consider the zero mode operators a; = Isp~ /2 = &g , combining this with
the fact that they are determined by the the transverse modes, we obtain
the mass-shell condition, which is an extra constraint needed to be added by
hand as operator equations.

Closed string case

For closed string, from its mass formula, the mass square operator also suffers
from the ordering ambiguity, thus the mass square operator is

4 D-2 ] ] 4 D-2 . .
M2 — ¥ (Z Zo/_na%—a> == <Z Zagna;—a) (2.83)

i=1 n>0 i=1 n>0

Because of its usefulness, we introduce the level operator

D—2 D—2
N=Y > a'al, , N=> Y a ,aj, (2.84)
n>0 i=1 n>0 i=1

Using the level operators, we have the mass-shell condition
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4 4 -
M? = a(N—a) = J(N—a). (2.85)
Equivalently N = N over the physical states, this is known as the level
matching condition for closed string. Note that the name of level operator
origins from the fact that they are actually not the number operator since
the factor 1/4/n difference between the annihilation and creation operators.
Determining a and D —We have give a non-rigorous derivation of the
fact that normal ordering constant a = 1 and critical spacetime dimension
D = 26. Now we are going to present a rigorous one based on the Ramanujan
sum of positive integers

S = L

n= .

12

n=1
Which is first intuited by Ramanujan. The rigorous derivation of the formula
based on the zeta function regularization. But before that, we given a heuris-
tic, dirty and interesting derivation, which is often used in derivation of the
Casimir energy in one-dimensional systems.
Firstly we introduce an infinitesimal variable ¢ < 1, we can replace the
divergent sum over positive integers by the express

in — ine‘m = —% ie‘en
n=1 n=1 n=1
0 e
T 9e(1—e)
e’ 1

(1—e)?  4sinh?¢/2
Using the fact that 4sinh® § ~ 4(§ + 3(§)3+ )2 = (1 + €2 +-+), we
obtain that

o0

> nee

n=1
Since 1/€? term diverges as ¢ — 0, it should be renormalized away. After
renormalization, we obtain the famous Ramanujan sum of positive integers.

The more rigorous way to derive the Ramanujan sum of positive integers
is the zeta function regularization. The Riemann zeta function is defined as

1

+ O(=).

1 1 1
212 €2

+o00
((s) =) n%, (2.86)
n=1

for complex number s such that Re(s) > 1. The zeta function has a unique
analytic continuation to s = —1, for which {(—1) = —1/12.
Now consider the naive classical mass formula



CHAPTER 2. QUANTIZATION OF THE BOSONIC STRING 45

81 D= 81 D—
_252 Z —252 Z (2.87)
5 7m0 i=1 S < mA0 i=1
Using the commutator [af,, o’ ] = nn', for mass formula, we have
1 i i i D=2
2 Z m —m o m(D - 2)] +§ Z O Qo = Z a—ma77L+T Z m.
m<0 m>0 m>0 m>0

The left mover modes obey the similar equation. In summary we have

4 D -2 4 (~ D=2
Mr=Z (N2 o2 (o2 2.
a’( 24 ) a’( 24 )’ (288)

which means that the normal ordering constant can be set as

D -2
a=—-:
24
As we will see in the next chapter, to make the light-cone description of
bosonic string theory Lorentz invariant, we must have ¢ = 1. This immedi-
ately implies that D = 26

Open string case

The mass-shell condition for open string is similar as the closed string,

= o 1
- <Z Zazna;_a> = —(N-a). (2.89)

i=1 n>0

The derivation of the relationship a = % is complete the same as we
have done for closed string. As you will see from the spectrum analysis, for
both of closed and open strings, the critical values are a = 1 and D = 26.
This reflects an important fact: the open string and closed string are not

different theories, they are both different states inside the same theory.

§2.3 String spectrum and Poincaré invariance

2.3.1 Closed string spectrum

Let’s now consider the excited states of the closed string in light-cone gauge.
We will prove that the critical spacetime dimension is D = 26 in this section
as we have promised.
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Recall that the Wigner classification Poincaré group tells us that the par-
ticle type (with the same mass, spin, etc.) are classified by the the unitary
irreducible representations of the Poincaré group. For string particle, things
are completely the same.

The level matching condition N = N tells us that each excited state must
be created by the left mover modes and right mover modes simultaneously,
since o

[Na ONZ%] =0, Vn,J; [N7 O‘fm} =0, Vn,j. (290)

If an excited state is created by right mover modes only |¢)) = ozj_lm e ozj_qnq |0; K+,

the level matching condition is broken: N|t) # 0 but N|t) = 0. Similarly for
the right movers. You can prove using, e.g., math induction, that
Nodt ..o [0; k¥) = (nq 4+ -+ nq)ozj_ln1 o -ozj_“nq |0; &), (2.91)

—n1 —nq

NG, G2 (0 k) = (ng + - )@, &0 RY).(2.92)

—n1

Exercise 2.3. Prove the identities (2.91) and (2.92).

From the above discussion, we know that a typical excited state with N =
N = n must have the form

Oél—l’nl e aZ_qTqu‘7_17n1 e dj—l'rﬂl |0; k#> (293)
whith ny +---+ny =n=my +---+my. Let us take a close look at the first
three mass levels separately.

Vacuum N = N = 0: tachyon
The first excited states N = N = 1

The first excited state is ‘ _
al |05 k"), (2.94)

where i,j = 1,--- , D — 2, thus there are (D — 2)? such states. Each of these
states has the mass 1 D_o

M?=—(1-=—7). 2.95

Sa-222) (2.95)

The problem is that both of o’ |, &’ | are SO(D—2) € SO(1, D—1) vectors, it

seems that they can not form a representation of Lorentz group SO(1, D—1).

Suppose that these states are massive, i.e., M? # 0. After going to the

rest frame of the particle by setting p* = (p,0,---,0), we can consider how

the internal degrees of freedom transform under the group SO(D — 1), thus

they must form a representation of SO(D — 1). However, as we have pointed
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out, there are (D — 2)? such first excited states, they can never form a repre-
sentation of SO(D — 1) and therefore can not form a massive representation
of D-dimensional Poincaré group.

Now suppose the these states are massless, i.e., M2 = 0. There is no rest
frame for massless particle, thus we choose p* = (p,0,---,0,p). In this situ-
ation, the particles form a representation of SO(D — 2), this can be achieved
using our first excited states. Notice that the massive particle has more inter-
nal degrees of freedom is a general phenomenon, e.g., our familiar D = 4, the
photon (spin=1) are massless, it has two polarization states but for massive
particle with spin 1, there are three polarization states.

In short, we see that if we want the first excited states form a representation
of Lorentz group, they must be massless, from (2.95), we see that

D -2
a=—— = 1, D = 26. (2.96)
This completes the proof that for bosonic string, we have critical normal
ordering constant @ = 1 and critical spacetimes dimension D = 26.

The massless first excited states form a 24 ® 24 representation of group
SO(24), this representation can decompose into three irreducible representa-
tions

traceless symmetric @ antisymmetric @ singlet (=trace). (2.97)

To each of these irreducible representations, we assign a massless field in
spacetime such that the string oscillation can be identified with the quantum
of there fields. The corresponding fields are

Guw(X), Buw(X), &X). (2.98)

The first one is the spacetime metric, which we will discuss in detail later.
The second is call Kalb-Ramond field, it is a 2-form. The last one is called
dilation. These fields are common in string theory, we will discuss them in
the following chapters.

The second excited states N = N = 2
For N = N = 2, the left mover sector are created by

al,, ozi_lozj_1 (2.99)
there are D — 2 such o' 4 and (D — 2)(D —1)/2 such o’ ;o | since they are

symmetric with respect to the indices ¢, j. The same is true for left mover
sector.
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Now, we still have to worry about Lorentz invariance. Since the excitations
are massive, they must form a representation of SO(D — 1). We have fixed
a=1and D = 26 to preserve the Lorentz symmetry in first excited states.
For N = N = 2, we need to check if this guarantee the Lorentz symmetry.
Fortunately, the answer is yes. Since there are D — 2+ (D —2)(D —1)/2 =
(D — 2)(D — 1)/2 which fit nicely a symmetric traceless second-rank tensor
representation of SO(D — 1).

2.3.2 Opens string spectrum

For open string, things are completely the same.

2.3.3 Counting the number of excited states

We have see that for a given mass level, N = n (for open string), there are
many degenerate states, let’s denote the degeneracy by d,, and see how to
count d,,.

Given a complex number w and the level operator N, we can introduce
the operator w” . By taking the trace in the |n,i,) (where n denotes the mass

level and i, = 1,--- ,d,, denotes the internal degrees of freedom), we define
+oo dn +o00
G(w) = Trw = Z Z (n,ip|w |n,i,) = Z dpw™. (2.100)
n=014,=1 n=0
Thus we can calculate the degeneracy from
1 G(w)
n =5 P (2.101)
where the contour is a small circle about the origin.
On the other hand, we can also calculate the trace from
TI‘ wN = Trw ?il Z::l ai—rn,ain
24 0 (2.102)
ST oo
i=1m=1

Notice that here we use Trw®=m%m to mean the trace over states generated
by (o ,,)! with I =0, -+ ,0c0. Simple calculation implies that

- 1
Trw®m%m =1 +w" +w?" +--. =

=0 (2.103)
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In summary, we have
Gw) = Trw = ﬁu —w™) " = fw) T, (2.104)
n=1
where -
fw)=J[a-w" (2.105)
n=1

is known as classical partition function.






Chapter 3
Conformal field theory

In this chapter, we will discuss the basics about the conformal field theory,
it has applications in many different areas of physics, most notably in string
theory, the critical phenomena in statistical physics and so on. The conformal
field theory, in spite of its name, has a very different methodology with the
usual approach for quantum field theory. For usual quantum field theory, we
start form the action for the fields and then quantize it using the covariant
quantization or path integral quantization. In conformal field theory, in spirit
of bootstrap approach, we can defined the a field theory without referring to
the actions but just by exploring the symmetries of the theory. Here we
will review some basic result mainly about two-dimensional conformal field
theory. Although we won’t talk too much about the higher dimensional case,
we want to stress that, because of it application in AdS/CFT correspondence,
this is a hotspot during recent years.

§3.1 Conformal transformation

We first discuss generalities of the conformal field theory, and the appli-
cations to string theory will be presented later. Consider a d-dimensional
flat space RP? (where d = p + ¢) with the flat metric g, = 1., =

diag(1,---,1,—=1,---,—1) of signature (p, q), viz, there are p I’s and ¢ (—1)’s
in the metric, the corresponding line element is ds? = g, dz#*dz”. Note that
here in this section we assume the indices p = 1,--- ,d. The space equipped

with the metric matrix which may have negative or zero eigenvalues is called
semi-Riemannian manifold, such as 4-dimensional Minkowski space, which is
also the main object of physical research. Here we use the Einstein’s sum
convention that repeated index is summed over, g,,,, should be understood as
the general metric which is a symmetric non-degenerate matrix and 7, the
constant metric diag(1,---,1,—1,---,—1). It’s also worth mentioning that
we will take the convention that dx is used as the informal notion of infinites-
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imal displacement and dx* is the rigorous notion basis one-form dual to the
tangent vector 0, = %. Notation dx*dxz” should be understood as tensor
product do* ® dz”thus dz#dz” # da”da* (in many physical literatures, the
authors tend to neglect the difference, but it should be clear what meaning
is used in the context).

Now let us see what is the conformal transformation, we will first give a
more rigorous and more abstract mathematical definition, and the details of
the definition will be discussed in aspects.

Definition 3.1 (Conformal transformation). Let (M,g) and
(M, g') be two semi-Riemannian manifolds, a differentiable map ¢ :
U — V from open set U C M to open set V C M’ is called confor-
mal transformation if, there is a positive funtion 2 : U — R such
that ©*¢g’ = 22g, where * is the pull-back map. More precisely, let
' (z) = p*(z), we have

lo 18
(¢ s @) = Gl @) S O = P (@)gale). (31)

The positive function £2(z) is called the scale factor, some authors also
using ¢(®) rather than 22(z) to denote the scale factor.

The conformal transformation preserve angles. Note that, if the scale factor
(z) = 1, the transformation preserve the metric (preserve distance thus
also preserve angle), it’s a Poincaé transformation. A conformal field theory
is a field theory which is invariant under conformal transformations. Since
dilatation is a conformal transformation, the invariance of the theory under
dilatation means that the physics of the theory is the same at all length
scales.

Depending on the physical system we are studying, there are two different
explanation of the conformation symmetry. In statistical physics, the back-
ground metric is fixed, conformal transformation is a real physical transforma-
tion, conformal symmetry is a physical symmetry, But when the background
metric is dynamical, as in string theory, the conformal transformation is only
a mathematical redundancy of our description of the physical world, thus
the conformal symmetry is a gauge symmetry (not a physical symmetry). In
these lectures, as we will discuss, conformal symmetry is a gauge symmetry
of our theory.
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3.1.1 Infinitesimal analysis

As in quantum mechanics, the infinitesimal generators of conformal group
Conf(RP-?) can be determined by considering the infinitesimal coordinate
transformation z# — 2" = z# 4 e#(x) where e#(z) << 1. The conformal
invariance will impose some corresponding constraints on £*. Under such a
infinitesimal transformation, the metric changes as
roe 18
naﬁxx_uxx_,, = N + (Ouev + Ouep). (3.2)

To make the transformation conformal, d,¢, + 0,¢,, must be proportional to
Nuws Viz.,

Ouev + 0vey = F(x)nu,. (3.3)
Tracing both sides of Eq. (3.3) with n*¥, we find that F(z) = 20%¢,/d =
20 - €/d. We then obtain the first crucial formula

(0 &) (3.4)

SHIN

Ougy + 0ve, =

The scale factor can be read off as 2%(z) =1+ 2(9-¢).

It follows from Eq. (3.4) that e*(z) is at most quadratic in 2. To argue
this, let now derive some other useful expressions from Eq. (3.4). First, acting
on both sides of Eq. (3.4) with 0¥ and summing over v, we obtain that

2

0,(0"e,) + (0"0y)e, = &8#(8 - €).

Using the notation of d’Alembert operator [0 = 0”3, we have
2
0u(0-¢e)+0e, = Eau(a -€).
Furthermore, by taking derivative 0, of the above expression, we have
2
0u,0,(0-¢)+00ye, = aa,,,au(a - €).

Then by exchanging the indices p <+ v, and adding the resulted expression
with the above expression, we arrive at the equation

4
20,0,(0 - €) + 0(0uey + Ovey) = 38”8”(8 -€).

Substituting Eq. (3.4) into the above expression, we obtain another important
expression

|0+ (d = 2)0,0,)(0 ) = 0. (3.5)
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Contracting the expression with n*¥ gives

[(d-1)0O(0-¢) =0.] (3.6)

Combining Egs. (3.5) and (3.6), we see that, for d > 2 (this is necessary, the
d = 2 case will be discussed later), 0,0, (0 - €) = 0. Therefore (0 - €) must
be at most linear in x, but this is insufficient to argue that e(x) is at most
quadratic in z. To get the final result, let us now take derivative 0, of Eq.
(3.2),

2
0,06, + 0,06, = Enu,,ap(a -€).
By permuting the indices, we have
2 2
0u0ve, + 0,056, = an,,pau(a -€), 0,0pe, + 0,0, = Enpu&,(a -€).

Subtracting the first expression from the last two in the above three expres-
sions, we obtain that

0u0uep = = (Npu0y + M pOu — 0 0,) (0 - €) (3.7)

1
d

Since (0 - €) is at most linear in x, then the right hand side of the above
expression is a constant, which implies that ¢ is at most quadratic in x.
In summary, we have the following result:

Proposition 3.1 (Infinitesimal conformal transformation for
d > 2). For d > 2, the infinitesimal conformal transformation e (x)
is at most quadratic in x¥, more precisely,

et(z) = a + b z¥ + ) 7" 2”, (3.8)

; B bl bt infinitesi By
where coefficients a*, bk, ¢, are infinitesimal constants and c*,, is

symmetric in indices v and p.

3.1.2 Conformal group for d > 2

Now, let us take a close look at infinitesimal conformal transformations
et(xr) = a" + bh,x¥ + ch x"xP. Each term will be studied individually
and their corresponding generators will be given. Recall that for a gen-
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erator G, and infinitesimal parameters ao, the field ¢(x) transform as

¢ (z) = e"1aCGa () ~ (I —ianGa)d ().

Translation

The constant term a* corresponds to infinitesimal translation z# — z'# =
"+ a*. The generator of this translation is the familiar momentum operator
P, = —i0,. There are d independent translation generators in total.

Lorentz transformation

For the term b“z" which is linear in x, by inserting it into Eq. (3.4), we obtain

2
buu + byu = Ebaanull' (39)

From this expression, we see that b,, can be split into a symmetric and
antisymmetric part as
buy = My + Wy

The antisymmetric part corresponds to the Lorentz transformation z# —
't = (0" 4w )x¥. The generator of the Lorentz transformations are angular
momentum operator J,,,, = i(z,0, —x,0,). There are d(d—1)/2 independent
generators of the Lorentz transformations.

Dilation

For the symmetric part of the linear term b# x", the corresponding transfor-
mation is z# — 2/ = (§*, + Aé*)z¥ = (1 + A)z*. This is the dilation (or,
scale transformation), the corresponding generator is D = —iz#0,,. Note that
from the expression (3.9), we have A = b% /d.

Special conformal transformation
Now let us focus on a special kind of conformal transformation, the so-called
special conformal transformation, which is a result of the term ¢/, jz"z”. It

is easily calculated that (0 -¢) = 2¢#, 2 and 0,0,€, = 2¢p,, substituting
them into Eq. (3.7), we obtain

o e a
(nVPC ap + NouC o — M€ ap)’

IS

(M0pOu + Mpudy — nwaﬁ)caaﬂxﬂ =

SN

Copv =

Let b, = %ca we have

QL)
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Copv = Mupbu + Npuby — N bp.

By permuting the indices, we have

‘ Cuvp = Nupby + N bp — Nupbp. ‘ (3.10)

This implies that the special conformal transformation is of the form

‘x” — 't :x“+2(x~b):c“fx2b“.‘ (3.11)

The corresponding generator is K, = —i(2x,2"0, — x28ﬂ), there are d inde-
pendent generators of the special conformal transformations.
Now let us consider the finite special conformal transformation,

B p2pp
' xt —xb

T 122+ 0222 (3.12)

which after expansion to first order of infinitesimal b is consistent with the
infinitesimal special conformal transformation (3.11). It’s easily checked that
the finite special conformal transformation can be rewritten as

== - (3.13)

From this expression, we see that the finite special conformal transformation
can be understood as an inversion of z# (which is a reflection with respect
to the unit circle), followed by a translation b*. And we also see that finite
special conformal transformation is not globally defined, since for given finite
b*, when 1 —2b-x + b%x? = 0, the corresponding point z# = b /b? is mapped
into infinity. To remedy this deficiency, we need to consider the so-called
compactification of the space RP-4, for which the infinity is added as a point
to make the finite special conformal transformation globally defined.

3.1.2.1 The commutation relation of generators
To summarize, we have in total
1 1
d+ 5d(d—1)+1+d:§(d+1)(d+2) (3.14)
generators. The different conformal transformations and their corresponding

generators are listed in Table 3.1.
The commutation relation for these generators are,
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vy Jpa] =1 (nupJ;w + npaJup - np,pt]ua - nuojp,p)

the proof is left as an exercise.

3.1.2.2 The d > 2 conformal group

From the above discussion, we see that the conformal group Conf(p, ¢) which
consists of all conformal transformations has (d + 1)(d + 2)/2 independent
generators. Observe the commutation relation of these generators, we can

introduce the operator Ly,, = Ly, , with m,n =-1,0,--- ,d

LN,V = J;LV7 Lfl,O =D, (321)

1 1

Lo, = E(Pu +K,), L.i,= §(Pﬂ -K,), (3.22)

and Ly, , = —L,, ,,. We can check that the commutation relation is
[Lmna Lkl} = i(nmank + nnkLml - nkanl - nnlek)- (323)

Note that for Euclidean space R%° the metic is chosen as 1,,,,, = diag(—1,1,--- , 1),
this commutation relation corresponds to Lie algebra so(d+1, 1). For Minkowski
space R¥~L1 the metic is chosen as 7,,, = diag(—1,—1,1,---,1), the com-

mutation relation corresponds to the Lie algebra so(d, 2).

Table 3.1 Infinitesimal conformal transformation in d > 2.

Transformations Scale factors 22(z)  Generators
Translation z’# = x# + a 1 P, = —i0,

Lorentz rotation z'# = A¥, z¥ 1 Juv = (20 — ,0,)
Dilation z'# = (1 + A)z* (142 D = —izHd,

SCT z'# =zt —2(z-b)z* +z2b* (1 —2(b-z) +b%22)? K, = —i(2z,2" 0y — 220,,)
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Theorem 3.1. For the space RP? with d = p + q > 2, the conformal
group is Conf(p,q) = SO(p+ 1,9+ 1).

Remark 3.1. Rigorously speaking, the conformal group Conf(p,q) is defined
as the connected component containing identity of the group of all conformal
transformations of the conformal compactification of RP>?. The group of all
conformal transformations is O(p+1,¢+1)/{£1}. The conformal groups are:
(i) if —1 is not in the connected component containing 1 of O(p + 1,¢q + 1),
we have Conf(p,q) ~ SO(p+1,q+1), (ii) if —1 is contained in the connected
component containing 1 of O(p+1,g+1), we have Conf(p, q) ~ SO(p+1, ¢+
1)/{+£1}. But physicists usually say that the conformal group of d = p+¢ > 2
case is SO(p+ 1,9+ 1).

3.1.3 Conformal group for d = 2

3.1.3.1 Complexification of coordinates

For d = 2, recall for the infinitesimal transformation * to be conformal, we
have the constraint

2
Ougy +0ve, = &(8 €)M (3.24)

Let us first consider the Euclidean space R*? with metric 1, = diga(+1, +1),
and the Minkowski space R'! with metric 7, = diga(—1,+1) will be dis-
cussed later. In Euclidean metric, the conformal constraint reads

8151 = 8252, 6182 = —8261, (325)

which are nothing but the familiar Cauchy-Riemann equations.
Now we can introduce the complexification of variables in the following
way, the complex coordinates are

1
z=a' +ix?, 0, = 5(0x = i0) (3.26)
1
z=x' —ix?, 0.= 5(896 +i0y) (3.27)

and the infinitesimal conformal transformation are

e=e +ie?, e=¢ i (3.28)
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The Cauchy-Riemann equation for ¢ indicates that a holomorphic function
f(2) = z+e€(z) gives rise to an infinitesimal 2-dimensional conformal transfor-
mation®, and the inverse direction is also true, any (orientation-preserving)
conformal transformation is a holomorphic function. Under the transforma-
tion z — f(z), the metric transforms as

4 df

zZ az

ds® = dzdz — ds'* = dzdz, $(z,%) = |df Jdz|2. (3.29)

Note that after complexification, two variable are regarded as independent,
we thus have R%? — C2. After we complete the calculation, we finally need to
add the condition that the complex conjugate z* of z is equal to the variable
z. This is a frequently used trick in conformal field theory.

3.1.3.2 Witt algebra and d = 2 conformal group

Witt algebra.—From the above discussion, we see that an infinitesimal
conformal transformation €(z) is a holomorphic function locally in some open
set U. But we call still assume that there are some singularities outside the
open set, thus we need to consider the Laurent expansion of €(z).

Around the point z = 0, assume the Laurent expansion of €(z) is

e(2) =Y en(—2"), E(z) =) en(-z"11), (3.30)
nez neZ

where €, and €, are expansion coefficients. The generators corresponding the
the transformation are

l,=—2""9,, 1,=-z""0;,. (3.31)

Since n € Z, there are infinite independent generators. It’s easily checked
that the generators satisfy the following commutation relations

[y ] = (M — n)lmtns (3.32)
[LTM in} = (’I’I’L - n)im+na (333)
[lm,l_n} = 0. (3.34)

1 Rigorously speaking, holomorphic functions give rise to orientation-preserving con-
formal transformations, since antiholomorphic function can also give rise to a confor-
mal transformation but not orientation-preserving. Here our infinitesimal analysis is
around the identity transformation, z — z, which is holomorphic, thus, the antiholo-
morphic case doesn’t appear.
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There commutators are familiar to us, as we have met them before in
the discussion of Virasoro generators L, for string mode expansions. Since
[lm;n] = 0, they forms two independent algebras W and W, both are known
as Witt algebras. The full algebra corresponding to infinitesimal conformal
transformations is thus A = YW@ W. Note that here, we see that the algebra
for z and Z are independent, this reflects in the fact that we treat z and z
independently.

Global conformal transformation.—The above discussion concentrate
on the locally defined infinitesimal conformal transformation, now we move
to consider the global conformation transformation. From the definition [,, =
—(2"*1)d,, we see that it’s singular for n + 1 < —1 at z = 0. The usual
way we learn from complex analysis to overcome this kind of singularity is
to consider the compactification of R?° ~ C as §** := C U {co}, known as
Riemann sphere. On the Riemann sphere, a new point need to be stressed,
00, by changing of variable w = 1/z, we find that

ln =w "1, (3.35)

We see that this is non-singular at w = 0 (i.e., z = c0) only when —n+1 > 0.
Similar result hold for z generators. Thus we see that [,, and [, are non-
singular on Riemann sphere only when n = —1,0, +1.

Theorem 3.2. The globally defined conformal transformation for Rie-
mann sphere S>° is generated by {l_1,lo,11}. For two copies S*0 x §2:0
of the compactification C x C, the globally defined conformal transfor-
mations are generated by {1_1,lo,11} U{l_1,lo,11}.

This is a good news for us, since they look much simpler. We now try to
obtain some intuition about these generators. In fact, we have

el 1 =-0,and 4 = —0; generates translations on the complex plane
z — z+band Z — z +b. This is obvious from their definition.
o [, =—220, and [_; = —220; generates special conformal transformations

on complex plane. This can easily seen from the changing of the variable
w = 1/z, the l; = 0y, it is the generator of translation for w — w + ¢,
thus the generator of special conformal transformation z — —=2

cz+1"

e lyp = —z0. generates the transformation 2 — az for some a € C, similar
result holds for [y = —z0;. Since we have
1 i . 1 i
ZO = —57”87« + 580, ZO - _57“87” - 5897 (336)

by rearranging them into

lo+1lo=-r8,, and i(lo—1lo)=—0. (3.37)



CHAPTER 3. CONFORMAL FIELD THEORY 61

thus we see that Iy + lp is the generator of dilation and 14 (lo — Zo) is the
generator of rotation.

From complex analysis we known translation, special conformal transform,
dilation and rotation on complex on complex plane form the Mobius group

PSL(2,C) = SL(2,C)/{+I}, (3.38)

where SL(2,C) = {z — Zzzi's|a7 b,c,d € C,ad—bc # 0}. Thus we come to the
conclusion that the conformal group of Riemann sphere is the the Mobius

group PSL(2,C).
3.1.3.3 Virasoro algebra
To introduce the notion of Virasoro algebra as a central extension of the Witt

algebra. We first give a discussion of the central extension g = g & C of a Lie
algebra g. The commutation relations of the central extension are

2,9l = [2,y]g + cp(z,y), (3.39)
%, c]3 =0, (3.40)
[c, C]@ =0, (3.41)

where ¢ € C is called central charge and p : g x g — C is a bilinear function.
Consider the central extension of the Witt algebra where the generators [,,
are now replaced with L,,. The commutation relation now becomes

[Lin, Ln] = (m — n)Lyyin + cp(m, n). (3.42)

Similar result holds for l,,, — L,,. The function p(m,n) can be determined
as follows.

Step 1: From the definition of Lie bracket, [L,,l,] = —[Ln, Lm], we have
p(ma TL) = 71)(71, m)

Step 2: We can redefine the generators as

~ 0 ~ 1,-1
B e Lt PO 0 and Do = Lo+ %. (3.43)
n
From the commutators
[Ly, Lo] = nLy, (3.44)
(L1, L] = 2L, (3.45)

we see that for these generators, p(n,0) = 0 = p(0,n) and p(1,—-1) =0 =
p(_17 1)
Step 3: Now we consider the following particular Jacobi identity:
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[[LTM Ln] 7L0] + Han LO] ﬂLm] + HLO’ Lm] 7Ln] =0 (3'46)

From which and using the fact that p(n,0) = 0 for all n and p(m,n) =
—p(n,m), we obtain (m + n)p(m,n) = 0. For m = —n, p(m,n) must vanish.
To summarize, the only non-vanishing terms are p(n, —n) for |n| > 2.

Step 4: To determine p(n, —n), we can calculate the following Jacobi iden-
tity

[[L7n+17 LnL L*l] + [[Ln7 L*l]a L*ﬂ“rl} + [[Lflu L*’n+1]7 Ln] = 0. (347)
From which we obtain
(=2n+Dep(l,-1)+(n+1)ep(n—1,—n+1)+(n—2)cp(—n,n) =0, (3.48)

this implies a recursion relation p(n, —n) = %p(n —1,—n+1). If we choose
p(2,—2) = 1/2 (this choice is because of a special choice of central charge c,
which will be discuss later), we obtain that p(n, —n) = n(n? — 1)/12.

In summary, we have introduce the Virasoro algebra as central extension
of Witt algebra.

Definition 3.2. The Virasoro algebra Vir. with central charge c¢ has
the following commutation relations of the generators

(Lo, Ln] = (m — 1) Lingn + —m(m?

12m(m

—1)dmino- (3.49)

§3.2 Energy-momemtum tensor

3.2.1 General energy-momentum tensor

Before we discuss the conformal fields, let’s recall some basics about energy-
momentum tensor for a field theory in Lagrangian formalism. By Noether’s
theorem, for a N-component field ¢, with a = 1,--- , N in spacetime x,, with
@ =0,---,D—1, any continuous symmetry transformation has a correspond-
ing conserved charge. Suppose that the Lagrangian is £, and the infinitesimal
symmetry transformation is

{6% = = = @k X (3.50)

6¢a = Waﬂwﬁv
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which is characterized by a set of infinitesimal parameters wg, the spacetime
transformation matrix X #ﬁ , and the field transformation matrix ¥ %, we can
define the energy-momentum tensor as

oL

T =
90,04

0" pa — g" L. (3.51)

Notice that here field component index «a is also in contraction. The variation
of the action is zero, since it is a symmetry of the theory

55 = /au <%5¢a - T””(le,) da® = 0. (3.52)

From this, we can introduce the Noether current, which is a conserved current

OL s

JHB = x B . 3.53
v aaﬂ¢a a ( )

The conservation law of Noether current reads
9, J"? = 0. (3.54)

And finally, the conserved charge corresponding to the symmetry transfor-
mation is

QP (z%) = / JoPdzP—L, (3.55)
space

3.2.2 Traceless energy-momentum tensor

In conformal field theories, one of the most crucial properties of the energy-
momentum tensor is that it is traceless:

(3.56)

For a scalar field ¢(x), under conformal transformation x, — 2}, =z, + ¢,
we have ¢/(z') = ¢(z), thus the field transformation matrix ¥g = 0. The
Noether current can be written as

) (3.57)
From the conservation law of the current, we obtain that
0=0,(T"e,) = (0,T" )e, + T" Oy (3.58)

For the special case of conformal transformation, translation with a constant
vector € = const, we obtain 9,T"" = 0 from above result. Together with this
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and the fact 7" is symmetric and for conformal transformation ¢,, we have
Ougy + Oue, = %77,“,8 - £, the above result further implies that

0= (0,T")e, + T e,

1
=0+ §T‘“’(8M6V + dvey)

1.2
=T Zpn,,0 ¢ .
ST w0 € (3.59)

From the arbitrariness of £, we see that T""n,,, =T} = 0.

3.2.3 Two-dimensional FEuclidean case

From the above discussion, we see that the energy momentum tensor of theory
obey conformal symmetry must satisfy

9,T"" =0 and T, =0. (3.60)

According to the expression of the energy-momentum tensor in Eq. 3.51, we
see that it is a rank-2 coavariant tensor, under the coordinates transformation
xH — H, THY transforms as

~ Ox* Oz¥
= — =1, 3.61
o e gpp (3.61)
Let us consider the complexification of coordinates (2°,z') = (—ir, o)
with Euclidean metric 7, = diag(1,1),
z=a2"+ix' = —i(r—0), z=2"—iz' =—i(r+0). (3.62)

Thus 2° = (2 +2)/2 and 2! = (2 — 2)/2i, from the transformation Eq. (3.61),
we obtain

1 ‘
T:. = Z(Too = 2iTo1 — Th1), (3.63)
1
T = Z(TOO + 2iTo1 — TH), (364)
1
T,;: =T;, = Z(TOO +T11). (3.65)

Using the properties of T}, in Eq. (3.60), the vanishing of the trace now

becomes
s

Since Tpg = —T711, we also have
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1 . 1 .
T.. = §(Too —iTy), Tsz= i(Too +iT1o). (3.67)
The conservation law now becomes
\aZTZZ =0, 0,Ts:=0. \ (3.68)

This means that T,, and Ts; are holomorphic and antiholomorphic re-
spectively, we will often used the simplified notations T(z) = T,.(z) and

T(z) = T::(2).

§3.3 Conformal fields

We now move to discuss the applications of conformal field theory in string
theory. Recall that in the mode expansion of the closed string, we have left
moving modes e~2"¢" and right moving modes e~2" _It’s convenient for
us to introduce the Wick rotation

T — —IiT,
the world-sheet coordinates become (0°,0') = (1,0) — (—it,0) = (6°,5!).
If we define w = 7 — i0 and w = T + i0, which we still refer to as light-cone
coordinates, we see that
5 =6"—-5& = —iw, (3.69)
05! = —w. (3.70)

Q
\

Qv
\

Q

\

. . —oinst Dy —
Then the closed string mode term can be written as e~2"%" = (¢2¥)~" and
e~2m%" = (e2w)~", To make the expression more compact, we can introduce

a new complex variable

5 = eZw — 62(777,0'), 7 = 6211_) — 62(T+ZG')

, (3.71)

Now we see that, after Wick rotation, the periodicity condition of ¢ is more
clear, since ¢ is now in the phase part of the complex variables z and Z.
With the wick rotation, in light-cone coordinates w, w, the metric becomes

ds? = dwdw.

From the definition of complex coordinates z, Z, we see that w = In z/2,% =
Inz/2, thus the metric is

1
ds? = —dzdz.
22z
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UG

Fig. 3.1 Mapping the world-sheet cylinder to the complex plane.

Here, the scaling factor 1/2zz can be removed by a conformal transformation,
and since our theory is a CFT which is invariant under this transformation,
we can rewrite the metric as

ds® = dzdz.

The components of metric in z, Z coordinates are 1,z = 7z, = 1/2 and 7,, =
Nzz = 0.

The motivation for us to introduce this kind of new complex variable is
not just the convenience. We know that the world-sheet of a closed string
is, roughly speaking, a cylinder. By introducing z = ¥ = €2(7=9) we con-
formally map the infinite cylinder to the complex plane in order to employ
the power of complex analysis. The time translation 7 — 7 + a now be-
comes dilation z — e2?z and the space translation ¢ — o 4+ b now becomes
a rotation z — e~2Yz. Quantum mechanically, the generator of time transla-
tion is Hamiltonian and the generator of space translation is the momentum
operator. In the complex coordinates, as we have discussed, the dilation cor-
responds to the Virasoro generators lyp + lp and the rotation correspond to
i(lp — lp), thus after quantization (central extension of the algebra), we see
that the Hamiltonian and momentum operators are

H=1Lo+ Ly, P=i(Lo— Lo). (3.72)

This kind of quantization scheme is called radial quantization.

3.3.1 Primary and chiral fields

By now, we are talking about the conformal transformations, but we still do
not have a formal definition of conformal fields. Roughly speaking, conformal
fields are a kinds of fields which transforms under conformal transformations
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in a conformal way. In fact, we will refer to all the local operators in CFT as
fields. Let’s now see some rigorous definitions about the conformal fields.

Definition 3.3. If a field ¢(z,2) transforms under scalings z — Az
according to

b(z,2) = ¢ (2,2) = "N p(Az, A2), (3.73)

then we say that ¢(z, 2) has conformal dimension (h,h).
If a field ¢(z, Z) transforms under arbitrary local conformal transfor-
mation z — f(z) according to

o909 = (L) (LY sweren, 6

then ¢(z, %) is called a primary field with conformal dimension (h, h).
If a field ¢(z, z) transforms under arbitrary global conformal trans-
formation z — f(z) (where f € PSL(2,C)) according to

o909 = (L) (L) swernen, 6w

then ¢(z,2) is called a quasi-primary field with conformal dimension
(h,h). Fields which are not primary or quasi-primary are called sec-
ondary fields.

If the filed ¢(z) only depends on z, it is called chiral (or holomorphic)
fields. Similarly, if field ¥(Z) only depends on Z, it is called anti-chiral
(or anti-holomorphic) fields.

From the above definitions, a primary fields is always quasi-primary, since
global conformal group is a subgroup of local conformal group. In a CFT,
there may exist fields not primary, they are named as secondary fields.

For an infinitesimal conformal transformation z — f(z) = z + ¢(z) with
le| < 1, we have (0f/0z)" = 1+ hd.e(z) + O(£?), and similarly we have
(0f/02)" =1+ hOs2(2) + O(e2). The field ¢(z, 2) transforms as

P(z+e(2),24+8(2)) = ¢(2,2) +e(2)0.0(2,2) +E(2)0:0(2, 2) + O(e%) + O(&?).

Thus from the definition of primary fields, we see that the transformation of
primary fields under infinitesimal conformal transformation is

65,E¢ = (Z),(Z’ 2) - ¢(Zv 2)
= (h(8:€) + h(0:8) + €0, + £05) ¢(z, 2) + O(e%,87). (3.76)
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§3.4 Operator product expansion

3.4.1 T, in string mode exrpansion

Before we give a general discussion of the conformal fields and operator prod-
uct expansion, let’s now take a quick aside to see the energy-momentum
tensor in string mode expansion.

For closed string with the Polyakov action, the mode expansion in complex
coordinates z, Z are

1 1 i 1
By — Zpn _ Lon ENT Lqpyn
Xi(2) 5" = P Inz+ 5 g 02 (3.77)
n#0
X(z) = lx“ — ip“ Inz+ i E ld“é‘” (3.78)
L 2 4 2m "

where we have set [y = v/2a/ = 1. The holomorphic and antiholomorphic
derivatives are

9. Xp = —% Z otz (D), (3.79)
nez

D X1 = —% 3 auz i, (3.80)
neL

fdz fdz ]{dz

. ©

Fig. 3.2 The illustration of the integration for radial ordering product.
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Chapter 5
World-sheet supersymmetric strings

The full name of string theory is
really superstring theory. The
‘super’ stands for this feature
called supersymmetry, which,
without getting into any details,
predicts that for every known
particle in the world, there
should be a partner particle, the
so-called supersymmetric partner.

By Brian Greene

§5.1 Ramond-Neveu-Schwarz action

In this section, let us discuss the Ramond-Neveu-Schwarz (RNS ) formal-
ism of superstring, where each bosonic fields X#(7,0) is paired with a
fermionic partner (7, o). The fermionic fields ¥* are two-component Majo-
rana spinors in the world-sheet and Lorentz vectors in D-dimensional space-
time.
The action consists of two parts S = Sp + Sp, for the bosonic part (in
conformal gauge)
1

4ra

Sp = — /d%@aX S0 X. (5.1)

In the world-sheet light cone coordinates, it becomes
1 2
SB = — d 03+X . 8_X, (52)
TQ
Notice that we still use d?c = drdo, which is not transformed in light-cone

coordinates. Hereinafter, we will set o/ = 1/2 for convenience.
73



74 5.1. RAMOND-NEVEU-SCHWARZ ACTION

For the fermionic part, consider the fermionic fields

for which we will often use capital letters A, B = —, + to represent the spinor
components, e.g., 1. Note that ¢)* are Majorana fermions, viz., their values
are real Grassmann numbers

{4, ¥B} = 0. (5-4)

To introduce the fermionic action, we first introduce the two-dimensional
Dirac matrices p® for which

{p*, 0"} = 217", (5.5)

The Dirac conjugation of the spinor is defined as (we have omitted the space-
time index here)

since 1 are Majorana spinor, the components are real, 1" = ¢T. We can give
an explicit matrix form as

#=(19) = (10): 7

The fermionic action is constructed as a standard Dirac action
1 _
Sp=—5- / da® " p®Oaihy,. (5.8)

The equation of motion of ¥* is the Dirac equation

pr0a Y = 0. (5.9)
Notice that
o 0 —0- - .
P00 =2 b= (i, i), (5.10)
0+ 0
Therefore, in light-cone coordinates, we have (d?c remains drdo)
Se =2 [dolio om0+ vy -0.0.) (5.11)

The equations of motion are

o_yt =0, 04" =0, (5.12)
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which means that ¢ only depends on o+ and " only depends on ¢, they
are left and right movers respectively.

85.2 Global world-sheet supersymmetry

In this section, let’s take a close look at the RNS action, its symmetries and
superspace description. The crucial feature of the RNS action is that it has
a supersymmetry.

5.2.1 Supersymmetry transformation

As discussed in the previous section, the RNS string action is

S = d*0 (00X, 0 X" + P p*0athy)

S or

:l /d20' [28+X . 8_X + Z (17[)_ . 84_"(/}_ + ’l,ZJ+ . 8_84_)} . (513)

™

The action is invariant under the global supersymmetric transformation

SXH = gypH
Er, (5.14)
Pt = p*0q XHe,
where ¢ = (e_,e4)7 is an infinitesimal constant Majorana spinor. When

expanded in components, we obtain

SXM =i(ept —e_yh),
St = —29_Xbe,, (5.15)
6¢i = 28+X'u'€_.

Exercise 5.1. Prove that the RNS is invariant under the above supersym-
metry transformations.

5.2.2 Superspace formalism

We have seen that supersymmetry transformation is a symmetry transforma-
tion that relates the bosonic and fermionic fields. However, from the above
formalism, the supersymmetry is not manifest. It turns out to be convenient
to introduce the notion of superspace, viz., we extend the world-sheet co-
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ordinates o to super world-sheet coordinates (6%,604) with o = 0,1 and
A = —,+ by adding the fermionic coordinates 84 = 6_, 6. Here 04 forms a

Majorana spinor,
0_
- (%) 610

ie., 04 = 6_,0, are real Grassmann numbers, {04,0p} = 0 and 6% = 64.
Since 6 is two-component spinor, the product of order equal or greater that
3 must be zero, e.g., 04050 = 0. We will use this fact frequently. Notice
that the degrees of freedom of bosonic coordinates and fermionic coordinates
must be the same, here, they both equal 2. The derivative and integral of
Grassmann number are of the form

0
@(a+693):b5143, (517)
/d@A(a+b93) =biagB. (5.18)

We will take the convention that df? = df, df_, thus we have J do*0_6, = 1.
The matrices p® for spinor operations are still

p0=(‘1)‘01)7 ,,1:<‘1)(1)>, ﬁzz‘poz(?jf). (5.19)

The Dirac conjugation of spinor @ is § = 87 3. There are several formulae for
arbitrary two spinors 11 and 15, which may be useful later

Prpy = oy, (5.20)
P1p%a = —Pap™yr, (5.21)
b1p®pPpa = Pap” pehn. (5.22)

We left the proof as an exercise. Another useful formula is two-dimensional
Fierz transformation

_ 1. -
040 = —55,4390907 (5.23)

whose proof is also left as an exercise.

Exercise 5.2. Prove the Equations (5.20)-(5.22) for spinors and the two-
dimensional Fierz transformation Equation (5.23).

Having introduced the superspace, it’s natural to introduce the superfield
Y#(o,04) over the superspace. The most general such function has a series
expansion in 6 of the following form

V(0™ 0,4) = XP(0™) + Guh (o) + %%B“(ao‘), (5.24)
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where B#(0®) is an auxiliary field whose inclusion does not change the physi-
cal content of the theory. This field is introduced to make the supersymmetry
manifest at the action level, i.e., off-shell (without use of equation of motion).
Since supersymmetry is a global symmetry, the non-physical field B*(c®)
cannot be eliminated by a local symmetry, but by its equation of motion.

The above expansion of field do not contain terms of 8 with power more
than two, because that 84 are Grassmann numbers, the higher-order term
vanishes automatically. From Equation (5.20), ¢ = 16, the terms linear in 0
are equivalent to the terms linear in §. Thus the above expansion are actually
in its most general form.

To construct the action, the super-covariant derivatives need to be intro-

duced,
_ 9 « NA _ 9 (A ,\A
Dy = 574 + (p%0) 40, D* = _89,4 (0p%)" 0q. (5.25)

With these preparation, the action now takes the form
S = 4i / do2d0* DAYV D ,4Y,,. (5.26)
T
Here we have

1.

DAY™ = 0+ 02B" + (0°0) a0u X¥ — L00(p" Do) a
(5.27)

DAYH — A 4 BRGA _ (§,2) A0, X" + %59(8a1/;“pa)A

Notice that [ df9%06 = —2i, substituting the above expansions into the
action and take integral for the fermionic coordinates, we obtain that

1 -

S=—5 /dUQ(aaX -0 X + YHp*0atpy, — B, BY). (5.28)
7

From which we see that the equation of motion for B, is B# = 0. Substituting

it into the action, we get the Radmond-Neveu-Schwarz action in the last

section.

Now we are at a position to discuss the supersymmetry transformation.
To this end, we need to introduce the generator of the supersymmetry trans-
formation

0 0

904 (p°0)40a, Q4 = BTN + (6p*) " 0. (5.29)

It can be checked that {Q4, D} = 0.

Qa =

Exercise 5.3. Prove that {Q4,Dp} =0.
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Since we are now consider the global supersymmetry, for constant Grass-
mann number €, éQ generates the transformation'

(5.30)

604 = [€Q,04] = €a,
§o = [€Q, 0% = Op“e.

This is the supersymmetry transformation in superspace. For fields Y*#, we
have

YR =Y (0%,04) — Y* (0,04)
= 0XH + 05+ + %é%B"
= [€Q, V"] = (eQY™*)
Al 0 o _ 1-
=t 557~ ("0 aa} (X“ + O+ + 5993#) (5.31)
=& [P + 048" — (p*0) 4, 0 X" — P4 5050 O]
= et + @B" — ep“00, X" + %éegpaaaw
= et + 0eB* + 0p“edn X* + %9_9@)0‘8&1/1“

Comparing the second and the last lines, we obtain that the variation of fields
under supersymmetry transformations.

For the action
1 —
S=-o- /daQ(OaX -0%X + ¢*p*dathy — BuB*), (5.32)

under the supersymmetry transformation

004 = [€Q,04] =
A [fQ’ al = ea, (5.33)
0o = [€Q, 0] = Ope,
the fields transform as
OXH = eyt (5.34)
oYt = p®edy X* + eB* (5.35)
0B" = ep“ O, " (5.36)

It’s obvious that, by using the equation of motion B* = 0, we obtain
the supersymmetry transformation for Ramond-Neveu-Schwarz action. The

! Recall that the variation over field @ generated by &Q is the commutator [€Q, &)].
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advantage of the superspace formalism is that the supersymmetry is manifest
at the action level.

5.2.3 Constraint equations

Let us now consider the conserved current associated with the global sym-
metry of the action. The first one is energy-momentum tensor 7y g associated
with the translation symmetry, the second one is the supercurrent J asso-
ciated with the global world-sheet supersymmetry.

Energy-momentum tensor

We calculate the energy-momentum tensor here using the normal Noether
current method. For Ramond-Neveu-Schwarz action

§= o / do? (07 X100 X, + 9 00ty (5.37)

consider the translation of world-sheet coordinates do® = a%, 0% — ¢'“ =
0% + a®, since X* is scalar field, X'*(¢’) = X* (o), its variation at o is

0XH(0) = —a“0, X" (5.38)
For the Lorentz vector and spinor ¥*, since we only consider the translation,

we have 9'"(0’) = y*(o) (under Lorentz rotation, it’s no longer true), the
variation of the field is

(o) = —a®Datl”, M (0) = —a®Dui. (5.39)
The variation of the action is
68 = — % / d?0 [20° X" 000X, + 0UH p*Oathy, + H p® 0ad1b,]
- / 20 [~20° X0y (P05 X)) + 0 Dapp® O
—9" "0 (a”Op1py)]
- / 00’95 (9aX - 07X + 0% Dutly.)

= % / 20 T" (5.40)

Note that for the term St p™ oy, recall the fact for spinors 1 phy =
—1hop®1)1, we have
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SYHp 0athy = — Ot p®SPH = Outh,p™al gyt (5.41)
Similarly, we have
aﬁaa'&ltpaaﬁwu - &ppaaa (aﬁaﬂ¢u)
= - aﬁaﬁiﬂpo‘aalﬂu - &#paaa (aﬁaﬁ¢u)
= — a8y (" p*0athy) - (5.42)

From the above calculation, we see that surface term is
1 _
JP = 5aﬁ (0aX - 0% X + Hp"0athy) (5.43)

the normalization factor 1/2 is a convention we choose to use, since we have
left 1/7 outside the integral?. The corresponding Lagrangian is (note here
1/7 is also left outside the integral)

1 _
L= =5 (0" X Da X,y + 0"p°0u) (5.44)

Now, using the Noether’s theorem, we obtain

oL oc
ap L SXHh__ T~ w_ =
a"Top =0X" 5rmay + OV grggmy —

1- a _
=05 X,0% 00X + 25,5000 — 2 [(0X)2 + 70,0,
1 _ _
:aa(’)aX”agXu + Zaa [¢”Pﬂ8a¢u + 1/J“Paaﬂwu}
1 — _ o _
+ Zaa [0 ps0athy — V" padpiby] — GQUT’B [(aX)Q + P p7 01, ]

1 . _
—a® [0 X40: X, + 10 iy~ 52 (OXP 4 10,0,

id’”maaﬁ]%] :

(5.45)
Here, we have adopted the notation (-, -) for symmetrizing indices, and [+, -] for
antisymmetrizing indices. The energy-momentum tensor must be symmetric
for indices «, B, thus we drop the antisymmetric term —iwp[aaﬁ]%. To
avoid the cluttering of equations, we will frequently used the notation (90X )2
to mean 0“X*0,X .

Finally we obtain the energy-momentum tensor.

2 This is just for convenient, since we have assumed that both open and closed
string ranges in [0, w]. Different choices of the convention give the different energy-
momentum tensor and supercurrent, they differ with an overall factor.
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1. o 7
Tap = 0a X" 03X, + 10 padathn — "o ((9X)2 + 94 p70,14,) .| (5:46)

The energy-momentum tensor is traceless if the Dirac equation p*0,9* is
used, viz.,

T,” =0. (5.47)

This can be derived easily from the formula of energy-momentum tensor by
taking trace, we left it as an exercise.

Exercise 5.4. Prove that the energy-momentum tensor T,z is traceless, i.e.,
T2 =0T, = 0.

Since T g is symmetric and traceless, it has only two independent compo-
nents, namely, Ty, and Tyo.

Supercurrent

Now let us consider the supercurrent associated to the supersymmetry trans-
formation

SXH = et (5.48)
SYH = peda XH (5.49)

Similarly as we have done for energy-momentum tensor, the variation of the
action is now

1 _ _
6S = ~5- / 4?0 [20% X006 X" + 0F p*Oathy, + H p® 0001,

- _2i / A0 [20" XF 0y (€00,) — DotB p® 1y + VH p* D00, ]
™

—zi / d*0 [2002010% X e — 0u p™pP 05 Xt e + Y p® pP 0005 X e
Y8

*QL / d?0 [2001)" 0" XHe + 21 p® pP 00,05 X €
T
0o ppP Op X e — &“po‘pﬁﬁaagXue]

— 5 [ P20, (27 X1G) — 0 (3757005,

1 . _
—5- / d*00, [201e0* XM — pF p®pPedp X,
m

1
= — /dZUaaja,
™
(5.50)
which gives the surface term



82 5.2. GLOBAL WORLD-SHEET SUPERSYMMETRY

_ 1_
J = —yHed* X + 51/)“/)0‘;) €0 X, (5.51)
The Lagrangian is still the one we used for deriving the energy-momentum
tensor, then for the supercurrent J, we have
oL oL
eJY =0X* ot -J°
¢ axm T gy 7

1- - 1-
—0" XX = Shup T 4 DX — " 05 X,

= —0°X, " — %@[jup“p €O XM + pHed* X+ — %@“pap €0 X, (5:52)
= — ' p*pleds XH
= —&’ " P95 X,
Therefore, we see that the supercurrent is
J* = —pPp*r 9 X, (5.53)

Since J*, a = 0,1 are spinors, you can naively say that there are four
independent components, since each of JY and J' gives two real indepen-
dent components. However, you can check that p.p®p® = 0, which implies
PadJ® = 0. From this constraint, we see that there are only two independent
components of J%.

Constraint equations

We have see that the conserved current 7,3 has two independent compo-
nents and J also has two independent components. This must be true in
the present case, since there is a super-conformal symmetry of the action.
The corresponding super-conformal algebra has four independent generators,
the energy-momentum tensor corresponds to two independent bosonic super-
conformal transformations, and supercurrent J% corresponds to two indepen-
dent fermionic super-conformal transformations.

Let’s now first analyze the energy-momentum tensor. As what we have
done in bosonic string theory, the light-cone coordinates o = 7 + ¢ is used
now. The metric tensor becomes

0 -2
(_2 0 ) ; (5.54)

0 —1 N
77045:<_l 2)7 775
2

where «, § = 4+, —. As we have seen before

N 0 —6_ _
P00 =2 (a+ 0 ) =p 04 +p 0 = =2(p-04 +p10-),  (5.55)
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where pt = p® 4+ p'. Note that p™ and p. are related by light-cone metric,
thus there is a 2 factor.

(30 () () - (80) e

From the expression of T3 and using the result given above, we obtain

Thy =04 X - 04X + %@“Pﬂaﬂ% =04 X0, X + %1/4 O thy
T _=0_X-0_X+ %&Hp,a,wu =0_.X-0_X+ i%w, SO,
Ty =Ty =0,X -0_-X+ il/;” (p+0- + p-04) Yy
— D 20X O X T (ps 0 4 p-04) ] (5.57)
=0, X -0_X + %Z” (P40 + p-04) Yy
S0.X0X — L0 (00 + p-04)
_ iq/ju (010 + p_84) b, = 0 < EOM of 1

Similar as we have seen in bosonic case, the components T, =T_, = 0
automatically from the equation of motion. The only two independent com-
ponents are T and T _.

Recall that the equation of motion for fermionic field is 0_1, = 0 and
0,4_ = 0 which means that v, only depends on o+ and similarly ¢)_ only
depends on o~. The bosonic part is familiar to us, 9, X only depends on o
In summary, we see that T, , only depends on o, similar reasoning implies
that T__ only depends on 0.

Vanishing of antisymmetric term in T,g.—In the derivation of energy-
momentum tensor, we say that since T, must be symmetric, thus the an-
tisymmetric term —izﬁ“p[aag]z/)u is dropped, which seems very artificial and
unsatisfactory. Now, let’s prove that it actually vanishes. For a, 8 = ——; ++,
because of its antisymmetry, it vanishes; for a, 8 = +—,

PPpi 0y =i (Y-, y) p° (pp0- — p_0y) <$+>
. 0-1 0 0_\ [v_ (5.58)
—1(1/)—,1/’+) <1 0 ) (a+ 0 > <,¢+)
=i (= - 04— + 4y - 0_1p1) = 0 <= EOM

similarly, for o, 8 = —+ case, they both vanishes as a result of the equation
of motion.
Let us now move to discuss the supercurrent.
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Jy = =p’pitopX,
= —p P H0L Xy — pTprptO-X,,
=2 (p_ps0"01 Xy + PLYHO_X,,)

=2p_pyv- 04X (5.59)
(00 (v
(18)(5) o
_ 0
=2 <¢+ '3+X> '
Similarly, we have
J_ =2 <1/’ '03X> . (5.60)

We can define the components of the supercurrent spinor as

Jp = (3+) , Jo= (_3—) : (5.61)

therefore, we have j+ = 214 - 01+ X. Note that from the equation of motion,
j+ only depends on o™ and j_ only depends on o~ .

Using the fact that Ty, j are functions of o and T__, j_ are functions
of o7, it is easy to check that both 7,5 and J“ are conserved as should be.
For examples

OTap=0"TTig+0 T_p=-20_Ty3—20,T_5=0 (5.62)
for f = —,+ and
%o =074 +07j_ =—20_j, —20,j_ =0. (5.63)

We stress that all the above equations follow from the equation of motion
of fields. However, the requirement of super-conformal symmetry actually
lead to stronger constraints than these, viz., the vanishing of the energy-
momentum tensor and supercurrent.

T++ = T,, = 0, j+ = j, = 0 (564)

Although, we won’t give a derivation here, we want to make some com-
ments about the super-conformal constraints here. The vanishing of energy-
momentum tensor is a result of the absence of the local gravity dynamics,
which is similar as the bosonic case and is relatively easy to understand. For
the absence of supercurrent, we notice that OPE JJ ~ T, which mean the
OPE of supercurrent with itself is the energy-momentum tensor, this implies
that J =0 when T = 0.
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§5.3 Boundary condition and mode expansion

In this section, we are going to solve the equation of motion for superstrings.
Since the equation of motion for bosonic part is 0_0; X* = 0, everything
remains the same as what we have done for bosonic string, the details won’t be
repeated here. For the fermionic part, the equations of motion are o, 9" =0
and d_1} = 0, or written as Dirac equation p®d,* = 0.

Let’s take a close look at the derivation of the equation of motion for
fermionic fields. The fermionic part of the action is

S~ / Po (-0 + brdy), (5.65)

where we have omitted the overall constant factor. The variation of the action
is

e v [ @ (0-046- + 00,50 + 5,0 +.060.)
= [ Polbv-0iv- + 04 (0-50-) ~ 0svbu
+0Y4 0-thy + 0 (V1.6¢4) — 011604 ]
= [ Pol0s (v-00-) + 0 (8400:) ~ 204680~ 20_.00.]

(5.66)

which gives the equations of motion for ¢’y provided the surface term vanishes

Surface term = / d?o (04 (Y_6_) + 0_ (Y 62p))

:% /d% ((0r + 0) (W_0Y_) + (87 — 0) (Y10%4)) . (5.67)

The vanishing of the surface term is usually determined by the boundary
condition.

Surface term = %/da [1/1751/}, |fc + 1/J+6w+|ﬂ

1

+ 5 /dT |:'(/176'(/17 |boundary - w+6w+|boundary:|
1

= E/dT |:¢_(5¢— |boundary - w+5w+‘boundary:|

3 [ AT =80- — 650, — -80- — 04801)],

(5.68)
where we have used the the value of variation at initial and final time equals
to zero: 69+ |; = 0 and d¢4|f = 0.
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Thus, in order to make the surface vanish, certain boundary conditions for
¥ need to be imposed. Note that this also depends on the type of strings
we are considering. Since we can set ¢ = 0 part and ¢ = 7w part equal to zero
separately, which corresponds to open string; or we can set them equal thus
they can be canceled, which corresponds to closed string.

5.3.1 Open string

For the case of open string, since two ends of the string are independent, the
boundary condition for two ends should be added independently. It’s obvious
that

Ph =y (5.69)

at o = 0, 7 make the surface term vanish. From the action (5.65), we see that
the overall sign of ¥ is just a convention, since when we use —1’; the action
remains the same. Therefore only relative sign at two ends matters, thus we
can make the convention that at ¢ = 0, we have

Yilo=0 = P2 |o=0. (5.70)
For the 0 = 7 end, there are two possibilities.

e Ramond boundary condition. In this case, the sign of the 0 = 7 end is
chosen as

7/fi|a:n = 1pﬁ|c7:7r« (571)

Ramond boundary condition gives the spacetime fermions, the mode ex-
pansion of ¢4 in this case is

B fi He—ino ™
V(o )7\/§Zdn (5.72)

neZ

1 ot
(o) = 7 > diemn (5.73)

nez

The expansion coefficients are the same for two expansion is a result of
the boundary condition at ¢ = 0 (for ¢ = 7, you can check that it is
also true). Since 1* are Majorana spinor, thus the expansion must be
real, which means that d”, = (d*)". The meaning of the statement that
Ramond boundary condition gives the spacetime fermions will become
clear later, in fact, the zero mode (ground state) is fermionic.

e Neveu-Schwarz boundary condition. In this case, the condition for o = 7
end is chosen as

wi‘cr:ﬂ' = _¢ﬁ|g:ﬂ—- (574)
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The Neveu-Schwarz boundary condition gives the spacetime bosons. The
mode expansion now becomes

V(o f Z be= o (5.75)

rezZ+1/2

Y (o) = Z bre=ire” (5.76)

r€Z+1/2

The statement that Neveu-Schwarz boundary condition gives the space-
time bosons will become clear later.

5.3.2 Closed string

For closed string, to make the surface term (5.68) vanish, we must impose
periodic boundary condition

(-0 = 1.094) [o=r = (V-9 — Y1094 ) [o=0- (5.77)

This can be achieved by choosing

bo(0) = £Y_(0+7), (o) = tiby (o + 7). (5.78)

The positive sign describe the periodic boundary condition, also known as
Ramond (R) boundary condition; the negative sign describe the anti-periodic
boundary condition, also known as Neveu-Schwarz (NS) boundary condition.

There are two sets of fermionic modes, as in the bosonic case, which we
refer to as left-moving (¢7) and right-moving (¢~ ) modes. The mode expan-
sions for ¢)_ for R boundary and NS boundary are

R: ¢ (07) =) die ", (5.79)
nez

NS: ¢f(o7)= > ble . (5.80)
reZ+1/2

similarly, for ¥, we have

R: ol (oF) = due2ino” (5.81)

nez

NS: ety = D bre (5.82)

rezZ+1/2
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There are four different closed string sectors, R-R, R-NS, NS-R,NS-NS.
The R-R and NS-NS sectors give spacetime bosons and the R-NS and NS-R
sectors give spacetime fermions.

§5.4 Canonical quantization

As we have seen in bosonic string case, the canonical quantization works by
promoting mode expansion coefficients to operators, and using the classical
commutation relation to give the commutation relation of the mode expansion
operators. Here, the procedure works completely the same, except that for
fermionic part, the anti-commutation relation should be used.

Since everything of the bosonic part of the RNS string remains the same
as we have discussed in bosonic string theory, we won’t repeated the details
here, but for convenience, we write down the commutation relations here

NN open string: [a4

m?
v
n

O‘m = m5m+n,077lwy (583)

} = [dﬁfmdvyz] = m(Sern,Onuu- (584)

closed string: [a¥, «
Let’s now focus on the open string with Neumann-Neumann boundary con-
dition.
In order to quantize the theory of fermionic fields, one can introduce canon-
ical anticommutation relations for the fermionic world-sheet fields

{wﬁl(ﬂ o), g7, UI)} =" dapd(0 — U/). (5.85)

From this, one obtains the following commutation relations for mode expan-
sions

R sector:  {dh,,d;} = 0" 0mino (5.86)
NS sector:  {b#,b%} = 0" 0,450 (5.87)

Since the spacetime metric appears at the right hand sides of the commu-
tators, there will also be negative-norm states, just like the bosonic theory.

Exercise 5.5. Derive the commutation relation (5.86) and (5.87) from the
commutation relation of the fields (5.85) using the mode expansion for R
sector and NS sector respectively. Similar as the bosonic case, you may need
to use the Fourier series of the delta function (with period 27 and in the
sense of distribution)

+oo
1 )
0(x—a)= o E ein@=a), (5.88)

n=—oo
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5.4.1 Fock space

For the RNS open superstring, there are two different Fock spaces corre-
sponding to R sector and NS sector respectively. The physical properties of
two sectors are completely different.

For the R sector, the fermionic annihilation operators are d,, (m > 0),
and the corresponding creation operators are d_,, = d},, (m > 0). The vac-

uum state |0) g is annihilated by both of bosonic and fermionic annihilation

operators
am|0; kYR = din|0;E*)r =0, m > 0. (5.89)

Notice that here k* represents the freedom form the bosonic zero mode p* =
M .
af /s, viz.,
p*|0; k*) p = k*|0; k) g. (5.90)

The excited states are obtained by acting the creation operators. We still
need to worry about the zero mode {dfy,d§} = n*¥, this is actually a Clifford
algebra. If we redefine I'* = \/idg which is the generators of the Clifford
algebra, the anticommutator is

(rr, vy = o, (5.91)

This means that the ground states of the R sector are degenerate and they
form a representation of the Clifford algebra. We can use the spinor label a
to label these state, |a), then we have

dlja; kH) = %rggw; k). (5.92)
This indicates that the ground state of the R sector is a spacetime fermion.
Since all the creation operators o, and d", are spacetime vectors, the ex-
cited states of the R sector are spacetime fermions.

For NS sector, the fermionic annihilation operators are b, (r > 0), and the
corresponding creation operators are b_,. = bl. (r > 0). Notice that there is no
fermionic zero mode in NS sector. The vacuum state |0; k*) yg is annihilated
by both the bosonic and fermionic annihilation operators

am|0; k) = b,.|0; k%) =0, m,r > 0. (5.93)

Since there is no zero fermionic mode in NS sector, the vacuum is unique,
which is a spacetime boson. Since all creation operators are spacetime vectors,
all excited states in NS sector are spacetime bosons.
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5.4.2 Super-Virasoro algebra

The super-Virasoro generators are coefficients of the mode expansion of the
energy-momentum tensor T, 3 and supercurrent J,. Recall that in their clas-
sical forms, we have

1- 1
Ty =04 X - 04X + 51/’#P+8+7/)u =04 X -0, X + Z§¢+3+1/1+7 (5.94)

T _=0_X-0_X+ %1/_)“;)_3_77[1“ =0_X-0_X + zéqp_a_qp_. (5.95)

Iy = (_3+) - <_é> , (5.96)

where jy = 2ty - 91 X. Notice that T, and j, is functions of o+ and T _
and j_ are functions of o~ . For quantized case, the normal ordering is needed.

For the open string, there is one independent set of L,,’s is defined, they
are given by

and the supercurrent

1 ™ ) ) 1 ™ )
Ly, = —/ do (e Ty +e "™ T__) = ;/ doe™ T, (5.97)
0

™ -7

where in the above we adopt a standard trick by viewing the open string as
one mover of the closed string by noticing (you can use the mode expansion
of X* and 9" to check it)

T (r—0)=Tyy (T+0") (5.98)

where we have defined ¢’ = —¢ with 0 < ¢ < 7. In other words, we extend
the T 4 (7 4+ ¢’) to be valid in the range of —7m < ¢/ < 7 with

Tii(t+o)for0<o <mo=0
T N — ++ = = 7, )
T+ (T +0) {T(T—U)for —7<0' <0,0=—-0' (5.99)
The reason for doing the above extension is simple, this makes the integration
to be carried out easily since now T is a periodic function in the range of
—7m < 0 < 7. Therefore, we have the energy-momentum operator

i
T++ = :8+X . 8+X: + §Z¢+0+1/)+2 (5100)
where we would like to stress that the normal-ordering is to oscillators.

For supercurrent, we extend again j; (c7) from0 <o <7to—7m7 <o <7
as we did for Ty ;. The corresponding generators for NS sector are
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G, = i/ﬂda (e"7jy +e 7)) = ifr doe’ j (5.101)
T \/§7T o J+ J— \/57'( . J+5 .
and for R sector are
1 ™ o o 1 T imo -
F / do (™7 j . +e ™) / doe"™% 5. (5.102)
0

" Vr ~ Vo ).

NS sector

Let’s now consider the NS sector. Recall that for the bosonic part, we have

1 .
6+X“ = ils Zaﬁeﬂ"‘#

(5.103)

where aff = [;pt. With this, we have (recall that we have set [y = 1 in this

chapter)

. . Ly . o, —i(n+m)ot
04X - 04X = ZZS nzmaan C e

one obtains that )
Lff =3 Z:a_m CQptm®

mEZ

(5.104)

(5.105)

There are a few subtleties in deriving the modes LY, and we will give an

illustration of them in what follows. In the NS-sector
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1 o
. . o __ = Nk P op—i(rt+s)o
Wy - 04y = 5 E (—i)shy - bste

r,s€Z+1/2

) s—r Ss4r . 4
=—= by - byce (T Hs)e
3 ( 2 T > ¢

r,s€Z+1/2
{ s—r , +
— _ o ' . o, —i(r+s)o
ke > 5 br - baie
rs€L+1/2 (5.106)

:——Z Z k — 2r):b, bkre*”w

k€ZreZ+1/2

= —i ST k2o, bpge T

kEZreZ41/2

=—i Z Lﬁe*m(ﬁr

neE”Z

where from the second step to thg third step, where have used the fact that
%ZT,SEZ+1/2 s;_r:br bgze  rt8)9T — (0 this is because that :b, - by: is anti-
symmetric with respect to s, and all other terms and the summation are
symmetric. Thus we obtain that

1 n
Y _ oy . o
Ly = 5 § (r+ 2)01),, bprs (5.107)
reZ+1/2
In short, we have
1 X Py, —inoT
T, = 3 EEZ(L +LY)e , (5.108)

and L,, = LWX1 + L',‘/jl.
For supercurrent in NS sector, we will extend again j; (oF) from0 <o <7
to —m < o < 7 as we did for 77 ;. The corresponding generators are

s

1 T 1
G, = —/ do (™7, +e M) = — doj,. 5.109
Var Jo ( J+ J ) NG J+ ( )
Note that here we don’t have normal-ordering issue, thus
gt (0F) = 2¢+ (04X

Z Zb oze_’(”'"

s€Z+1/2 n€EL (5.110)

Z G, 6727‘0

TEZ-{—l/Q

§|

%!

where
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Gr=) a_pn bun. (5.111)

ne”Z

Using the commutation relation of the mode expansion operators, we can
derive the commutation relations for L,, and G,. The result is

NS super-Virasoro algebra:

[Lony L] = (m — 1) Lypyn + gm (m® = 1) pgny0 (5.112)
m
[Lyn, Gy = (5 . 7«) Gt r (5.113)
D 1
{Gr,-, GS} = 2Lr+s =F 3 (7"2 — Z) 5T+S’0 (5114)

Exercise 5.6. Derive the NS-sector super-Virasoro commutation relations
above using the commutation relation of mode operators.

Notice that, if you compare the above commutation relation (5.112) with
the standard Virasoro commutation relation, you can find that ¢/12 = D/8,
this implies that ¢ = 3D/2. The central charge characterizes the degrees of
freedom of the theory. The bosonic part X* contribute D (real) degrees of
freedom. The fermionic part ¢)* contribute D/2 (real) degrees of freedom, in
total, they are D + D/2 = 3D/2 degrees of freedom.
To add the constraint of physical state condition , we need to take a close
look at Ly,
Lo= LY + LY = %ag + Nus (5.115)

where the level operator Nyg is of the form

NNS:Zafn'Oén'i‘ Z rbfr'br (5116)
n=1 r=1/2

Similar as the bosonic case, to promote the classical constraint Ly = 0 to
operator constraint, we must introduce the normal ordering constant ayg-
All other generator do not have the normal ordering issue. Therefore, the
physical state condition are

(Lo —ans)|#) =0 (5.117)
L, |¢) = Grl¢p) =0,Ym,r >0 (5.118)
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The condition (5.117) is usually called mass-shell condition . Recall the
alfl = lsp*, the mass formula operator is

1
M? = E(NNS —ans)- (5.119)

R sector

In a similar way, for R sector, we have the generators corresponding to 77
Ly =Ly +LY (5.120)

X of NS sector and

with L:X the same with L

1
L= S+ %):b,n N — (5.121)
nezZ

The generators of supercurrent are

Frp=> 0y bpin. (5.122)
nez

The commutation relations of these generators are

R sector super-Virasoro algebra

D
[Lon, L) = (m — n)Lypyn + §mi“’(smn@ (5.123)
[Lon, Fr] = (% - n) Frtn (5.124)

D
{F, Fp} = 2L + 5m25m+n70 (5.125)

Exercise 5.7. Derive the R-sector super-Virasoro commutation relations
above using the commutation relation of mode operators.

Note that the R sector commutation relation of L,, is very different with
the standard form of the commutation relation of the generaors L,, of the
energy-momentum tensor. This is because that energy-momentum tensor is
not a tensor, it depends on the choice of the frame of coordinates. If we
choose the appropriate frame of coordinates, we can obtain the same form of
commutation relation as the NS sector.

To give the physical state condition, we also need to introduce the normal
ordering constant ar for Lg. Note that
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1
Lo=LY + LY = iag + Ng (5.126)

where the level operator Ng is of the form
oo
Ny = Z (a—n “Qp +nd_g, - dn) . (5127)
n=1

The physical state condition are

(Lo — agr)|¢) =0, (5.128)
Ly|#) =0, V¥m >0, (5.129)
Fn|¢) =0, V¥m>0. (5.130)

The condition (5.128) is called mass shell condition. Recall the of = I;p*,
the mass formula operator is

1
M? = J(NR —ag). (5.131)

Notice that from (5.125), one obtains {Fy, Fo} = 2Ly, i.e., F§ = Lg. This
directly implies that agr = 0, since we can use the physical state condition
that Fp|¢) = 0. Let us take a close look at this physical condition. Since

Fo=Y a_,-dy

neZ

00 -1
ap-do+ ) apdot Y an-dy (5.132)
n=1

n=—oo

=a0~d0+2(a,n~dn+d,n-an)

n=1

Note that df = I'*/+/2. For open string, af = l,p", we have

p.mg;(a_n-dﬁd_n-an)] ) =0 (5.133)

while for closed string right-mover (similarly for left-mover), recall that af =
lsp* /2, we have

2V2
p-T+ {;(a_mdmrd_man)] #) =0 (5.134)
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where we used «off = lsp"/2 In each case, it is the stringy generalization of
Dirac equation, known as Dirac-Ramond equation.
One may wonder why don’t we set

Folg) = cl¢) (5.135)

with ¢ a Grassmann number. Even so, we still have
Lolg) = Fgl¢) = ¢*|¢) =0, (5.136)

this still giving ag = 0. The other way to think that ¢ = 0 is that we don’t
have an ambiguity in defining Fj, unlike L.

5.4.3 Superconformal symmetry

We now discuss how to obtain the classical super-Virasoro algebra from the
coordinate transformations. I will give an illustration for closed string in NS-
sector. In other words, we will derive the classical super-Virasoro algebra
given here without the central terms. In the supersymmetric case, once the
world-sheet to be curved and to be supersymmetric, we need to have super-
gravity on the world-sheet. Since we have now fermions on the world-sheet,

the metric is not a good variable and we need to use vielbein e, instead
such that v, = eaaegbnab with 74, the 2d flat metric. Recall that

a a (67 « a

et =e (o)do®, e, =¢, (0)&7, (5.137)

are dual to each other, i.e., e *(e,) = 6,*. There are four symmetries of e *,
2 local diffeomorphism, 1 Weyl symmetry and 1 Lorentz symmetry SO(1, 1),
these symmetries allow us to set
e, =146,°, (5.138)
means that the metric is flat.
The super partner of e, * is the world-sheet gravitino x,, a vector spinor
(Majorana-Weyl spinor) on the world-sheet. There are two fermionic sym-
metries 7(o) and two SUSY e(c), both of them are local symmetries, these

symmetries allow us to set
Xa =0. (5.139)

The world-sheet local SUSY transformations are

0Xa = Ve, de, =€epXa (5.140)
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where V, is covariant derivative defined on the curved world-sheet using the
corresponding spin connection (since the spin connection does not contribute
to the spinor term, here V,, can be relaced with 9,,).

The SUSY preserves e,* = 6, and x, = 0, thus

0Xa =Vae=0, de,* =€p*xa =0. (5.141)

[0

When we choose x, = 0 and € = const., the above conditions holds, but this
is special solution. Let’s firstly consider the fermionic symmetry

OXa = ipan, (5.142)

expressed in light-cone coordinates,
00/ \ny/) L o0
Sxt =i = . 5.143
X+ = 1p21) (o0 (a0 (5.143)
-10) \ny )  \ —in_

By properly choosing the gauge n4 = 1+, we obtain

(B () e

This gauge choice can be summarized as p®x, = 0. Now, consider the SUSY
transformation

O(x+)+ =044 =0, 0(x-)- =04e4 =0, (5.145)

this implies e (¢~ ) and e_(c™) are holomorphic and anti-holomorphic re-
spectively. This means that holomorphic and anti-holomorphic SUSY can
also preserve e,* = §,* and x, = 0.

In superspace (0%,60,) formalism, the SUSY transformation is

601 =es(0F), 0% =0p°c & S0 = —2ifre<(0%). (5.146)

For simplicity, in the following we focus only on the holomorphic part and
the anti-holomorphic part can be discussed exactly in the same way. In other
words, we have

60y =€y (07), b0~ =—2if1e; (07) (5.147)

These transformations should be given by the part of the corresponding gen-
erator responsible for the holomorphic one. In general, the general one in-
cluding both holomorphic and anti-holomorphic contributions is given by the
€Q with @ given in (5.29) as
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0

Qa = 504 (p°0) 4 Ou (5.148)

Note that since € is no longer a constant spinor, we don’t have éQ = Qe due
to Q being an operator. Writing explicitly,

Q=i Q=) (1) (&) =il st

(5.149)
So we expect that the holomorphic part is generated by
ie1Q— (5.150)
Let us do a quick check
. .00 -
001 = [ie4Q—,0,] =iey = =€y (07),
o0 5.151
b0~ = [ie;Q_,07 ] = —iey (07) (p0) — 2iey (p40) — (5.151)

= 27:6+9+ = —22‘0+6+(0'7).

In the above, we have used the following fact about light-cone metric and

Dirac matrices
01 0_
-+ _ _ _

For closed string in NS-sector, recall that SUSY transformation is
Pt = —20_XFtey, oYf =20, XM e_. (5.153)

When e4 is promoted into holomorphic and anti-holomorphic function, they
should satisfy the NS boundary conditions, therefore, we have the following
Fourier expansion (take e (07) as an example, it’s antiperiodic)

er(07)=- Z €.e2r (5.154)
reZ+1/2
We have now
- — - 2iro” 0 (e
’L€+(O' )Qf:’é Z €r€ %T_—(p 9)—(“)&
reZ+1/2
=—i Y e 9 9.0 (5.155)
" 90— T '
reZ+1/2

=2 Z Ergrv

reZ+1/2
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where ) 5
[Ty
r=——e""7 | — +20,0_ ). 1
g 5¢ <80+ 0 ) (5.156)
Note that from 50
B . 0
254 = (p )BA’ (5.157)
we have 50
+ _ /(0 —
—aé_ = —1 (p )+7 = —1. (5158)
From SUSY transformation in superspace, we have for each given r
(004), = =7, (007), = 2i0 €. e*™ (5.159)

which can be generated by 2¢.G, and these can be checked easily. So
G,(4.234) is the generator, corresponding to the classical G, in the super-
Virasoro discussed earlier. Let us check if this is true indeed.

{Gr, G} = ieilr+s)o” (a —(r+ s)9+8%> =2L,4s. (5.160)

where r + s is an integer and

T o — 0
£n = 5621’”0 (8 — n9+80T) (5161)
One also can check
[Ln, L] = (n—m)Lyim (5.162)
n
[‘Cna gr] = (5 - T> gn+r- (5163)

This coincides with the classical super-Virasoro algebras in NS sector.

Exercise 5.8. Prove the super-Virasoro algebra commutators (5.160)-(5.163)
above.

5.4.4 Ghost elimination

Spurious state

§5.5 Light-cone quantization

The appearance of the super-Virasoro algebra, just like the case of the bosonic
string, indicates that there is a residue of symmetry after the gauge fixing,
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which is actually the super-conformal symmetry as demonstrated in the pre-
vious section.

As in the bosonic case, we can still use the allowed bosonic conformal
transformations ot — o’F = o/% (0%) to set the light-cone gauge condition
for XT as

Xt (r,o)=a" +pr (5.164)

Let us give a bit detail discussion of the previously given global SUSY to the
super-conformal one.
8§5.6 Superconformal field theory

Recall that the RNS action in world-sheet light cone coordinates is

. .
§=— /d208+X CO_X + %/d%(z/)_ O+ - 01p_),  (5.165)

and also recall that for Wick rotation 7 = —i7, we introduced complex coor-
dinates w = ¥ —i0 and w = 7 + ic; and also z = €?* and z = €?”, then we
have ) 1 d5d
zZdz
d*o = drdo = —idfdo = —dwdw = = 5.166
o =drdo idrdo = Sdwdw = 5 - — ( )

As per usual, we simply write the 7 as 7 for convenience.

§5.7 Appendix: group theory



Chapter 6
Spacetime supersymmetric string theory

In the last chapter, we have discussed the RNS formalism of the superstring,
where we introduced the world-sheet superspace (o, ) and the fermionic field
1* which is a spacetime vector and a world-sheet spinor. The main advantage
of the RNS formalism is that the quantization maintains space-time Lorentz
invariance as a manifest symmetry is easy to implement. However, there are
some disadvantages of the RNS formalism, the first thing is that spacetime
supersymmetry is not manifest. The GSO projection is necessary to show that
ten-dimensional RNS superstring has an equal number of bosons and fermions
at each mass level. Another one is that the Fock space are constructed for
R-sector (spacetime fermion states) and NS-sector (spacetime boson states)
separately.

In this chapter, we will discuss the spacetime supersymmetric string theory,
which is introduced by Green and Schwarz, thus named as Green-Schwarz
(GS) formalism. For this formalism, we introduce the spacetime superspace
and the spacetime spinor ©4. Both of X*(o) and ©4(s) are world-sheet
scalars, namely, under world-sheet coordinate transformation ¢ — o', we
have

XM (o) = XH(0), O ') =0%0). (6.1)

As we will see, this formalism can overcome the shortcomings of the RNS
formalism, the GSO projection is automatically built in the theory thus the
spacetime supersymmetry is manifest, and the bosonic and fermionic strings
are unified in a single Fock space. But, as you may have guessed, these advan-
tages does not come for free, the main disadvantage for the GS formalism is
that the covariant quantization of the theory is almost impossible because of
its high nonlinearity. The light-cone quantization can be implemented, here
the Lorentz symmetry is not manifest.

101
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8§6.1 Green-Schwarz formalism for DO0-brane

Let us begin with the discussion of the point particle (or DO-brane in string
theory content), which is simple but rich enough to give us some insights.
After this preparation, we will turn to the string (D1-brane) case in the next
section.

Recall that the action of a massive relativistic point particle is

S = —m/ V-X2dr, (6.2)

our aim is to generalize it to the action which describes the supersymmetric
massive point particle. To this end, we need to introduce A spinor fields
O4(1) with A = 1,--- , N. The number N characterizes the number of su-
persymmetries, usually the number is chosen as the minimal spin in a given
spacetime dimension D. We will use notion ©4¢ to denote the a-th component
of spinor ©4. In a given spacetime dimension D, the number of components
is [ D/2] (the integer part of number D/2) for a general Dirac spinor.

Let us first recall the Majorana representation of the Dirac gamma matri-
ces I'*, n=0,1,---,D —1 with

{r*,rv} =2n™". (6.3)
Each I'* is a real matrix and we have
(O =TT =-r°, (M =u0Hr'=r%i=1,---,D—-1.  (6.4)
Using these equations, we obtain
(rmyf =ropero, (6.5)

For Majorana spinor ), its Dirac conjugation is 1'% = 4TI, For two
spinors 11 and 1, we have a useful formula

1 THepy = pf TOT 4Py = 1o (I°T) , Yo

oy (IOTM), 1o = —4F (1°T")" -y
= —gf DT 4y = gy DO 4y

= —1712['“1/}1.

(6.6)

Another formula we will frequently use is (Y 1*), = (I'°T*1)),, you can prove
it using the properties of the gamma matrices.

With these preparations, we are now at a position to give our supersym-
metric action. In order to do this, we need to introduce a combination of the
bosonic and fermionic fields
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I} = X* — 04r+e4, (6.7)

where the Einstein summation of repeated index A is assumed. The subscript
0 for I} indicates that this is for DO-brane, as we will see later in this chapter,
for Dp-brane, we have

I* = 9, X" — 641r+9,04, a=0,1,---,p—1. (6.8)

The supersymmetric action is constructed by substitute X* in the action
(6.2), X* — II}. As a result, we obtain

Sl = —m/ vV —Ho . HodT, (69)

where the subscript of S7 indicates that is is not the final result, we still need
to add an extra part. But before that, let us first discuss this action.

Symmetries of the action

There are two symmetries of the action, the first one is the local diffeomor-
phism of world-line, and the second is the global super-Poincaré symmetry.

e Local diffeomorphism of world-line.
e Global super-Poincaré symmetry. Consider the supersymmetric transfor-
mations

59Aa — EAa
A " (6.10)
OXH =2e2TrO
where £4% are Grassmann constants and the summation over repeated

label A is assumed. In fact, I1j is invariant under the transformation
) _ ) d ) _
6 (X1 —@rre) == (A rret) — et — ot
T
—eArreA —#Arret = o. (6.11)

This implies that the action S; is invariant under the transformation.

Exercise 6.1. Prove that the action S is invariant under local diffeomor-
phism of world-line

6.1.1 D =10 and N = 2 case

Since the DO-brane is a massive point particle that appears as a non-
perturbative excitation in the type ITA theory, which is a D = 2 and N' = 2
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theory, hereinafter, we will focus on this case. Now we have two spinors '
and ©2 which are both Majorana-Weyl and have opposite chirality. From
them, we can construct a Majorana (but not Weyl) spinor

0 =0"+067? (6.12)

and ©! and ©? can be obtained by projection

o' = l(1 +1rhe, e?= L

5 2(1 - rhe, (6.13)

where I''t = 197 ... 9 satisfying (I''Y)?2 =1, {I''Y, I*} =0,Yu=0,---9
and (I''Y)T = 1. Similar as the I'*, we have the following useful formulas
for spinor calculation

1T Py = —ho Iy, (6.14)
(I )e = (1T )a, (6.15)
U1 T g = o TH T ey, (6.16)

As you may have learned in quantum field theory, it’s easily checked that
1
5(1iF11) (6.17)

are projectors. Given the above, we have

I = X* - o'r+e' - 6°re*

= X+~ (@1)T r'ree' — (e*)" r'ree?
. 1 .
_ Vv T 11\ 770 1 oT (1 _ 11 7Opp (1 _ pll
=X @(1+F )rr# (1+r')e -39 1-r'Yyr'r-(1-rt)e
. 1_
_ ;L__ “w 11 _ - _ i1
=X 28F (1+1r'he 56T H(1-rtye

= X" —orre.
(6.18)
Though the expression of S7 looks good, the action S; is not the required
theory, this can be seen by deriving the equations of motion associated with
X*# and @. The canonical conjugated momentum to X* is

P B ($S1 7m(XH—@F9> B mHO,u (6 19)
Bosxn V—II - IIy V—IIy - II .

The equation of motion for X* is

oL oL

Tm—mzo—)PMZO, (620)
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which means momentum conservation P* = const. By calculating the norm
of P¥, we obtain the mass-shell condition

P? = —m?, (6.21)

which indicates that not all components are independent.
For the Majorana spinor ©, notice that (remembering that © are Grass-
mann numbers)

_Bﬁ_m<XM_éFH@)éFM

Po=— =
7 96 v —=1Ily - Iy
=P,Or* =P, r°r-o (6.22)
(6.23)

where in the last step, we have used the fact that (I'*)T = I'°T* 0. Similarly,

oL B .

56~ ~P,6I = —P,I°T"O. (6.24)
From the Eular-Lagrange equation and using the equation of motion of X*,
we arrive at the result P,I'°I"*© = [P - I'© = 0, multiplying both sides
with I'Y, we have the following Dirac equation

P-IoO=0. (6.25)

Using the property of Dirac gamma matrices, it’s easily checked that (P -
I')? = P? which equals to —m?. Multiplying both sides of equation (6.25)
with P - I, we obtain

(P-I')?6 =-m?6 =0. (6.26)

When m # 0, © must be a constant spinor on-shell. This is too strong since
we normally expect that its equations of motion only reduces its degrees
of freedom by half but here it reduces all. Specifically, this would imply
that the static vacuum-like solution would preserve no supersymmetry but
usually it should preserve half of the supersymmetry. Let us make it clearer by
considering the static solution by choosing P* = (m,0,---,0). The natural
solution for this is choose ©® = 0 since we have only a bosonic vacuum like
solution. Even if we choose © = const, we can use the supersymmetry §04¢ =
e4¢ we can make © = 0. However, once this choice is made, we have no
supersymmetry left which can preserve the static solution P* = (m,0) and
© = 0. But, in general, we still expect that there is still half of supersymmetry
left which preserves this solution. This indicates that for massive case, the
Dirac equation (6.25) is not the required equation.

For the massless case m = 0, we must use the Einbein field action
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1 [ X2
S = 5/%&, (6.27)

where e(7) is the einbein of the world-line. If we follow the procedure given
before, the corresponding supersymmetric action is

S = %/dTefl(T)Hg. (6.28)

The action is invariant under world-line diffeomorphism and supersymmetric
transformation

60 =¢
OXH =2cl*e (6.29)
de(r) =0

Exercise 6.2. Prove that the action (6.28) is invariant under the supersym-
metric transformation (6.29).

From the action, we have

S _ B . _ .
Pu= 2o = e )y =7 (7) (X# - (9@9) : (6.30)

and the equations of motion for X* @ and e(r) are

Pu =0, (6.31)
P-I'o =0, (6.32)
I12 = 0. (6.33)

We see that P* = const, and the last equation is nothing but the massless
on-shell condition P? = m = 0. For the second one (Dirac equation, which
have the same form as the massive case), since (P - I")? = P2 = 0, this does
not lead to © = 0 as was the case for massive case discussed earlier.

Consider the solution P* = (P° P), from the mass-shell condition, we
have (P?)? = ||P||?. The Dirac equation becomes

Ip.T. .
po )0

)6 = 0. (6.34)

0=(P'Iy+P -T)0 =P IH(1 +
'p.T
+ T

Here we used P and T to denote the space components. It’s easily checked
that

< (1

rp.T\>
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which implies that the eigenvalues of the matrix are +1. Again, we can check

that
p.r

which implies that half of the eigenvalues of the matrix are —1 while half of
them are +1. Suppose we are working in the basis of the eigenvector of this
operator, we have
m’p.r
1+ TP T g diag(1, 1,0, .0). (6.37)
P —— N —

16 16

Correspondingly, we divide the components of © into © = (6,,60_)T with
O, for +1 eigenvalues and ©_ for —1 eigenvalues. Therefore, the equation
of motion (6.34) becomes

0,=0 (6.38)
and there is no constraint for ©_. Consider the BPS solution, for which we
choose PV = (P°,P°,0,---,0) in some frame, the solution should be

0,.=0, 6_=06_(7). (6.39)

The supersymmetric transformation must preserve the ©, = 0, which implies
that e = 0, only half the supersymmetries left. This looks good.

The above discussion means that the Dirac equation of the form P-I'© = 0
works well for massless particle but not well for massive particle. Therefore,
we can guess that the operator acting on OisP-T plus some extra term mA
which is proportional to m and preserve the Lorentz symmetry, viz.,

(P-T' +mA)6 =0 (6.40)

Since we have known that (P-I")? = —m?2, this, as in equation (6.26), implies
6 = 0 which is not we want. So, to remedy, we can assume that (P - I" +
mA)? = 0, which then makes © free from being zero. This suggest that
(mA)? = m?, finally, after some trials, you will find the right form

(P-T'+mIlh)e = 0. (6.41)

It’s easy to check that (P - I' + mI''1)% = 0.
The above proposed modification of the equation for © can be derived
from the following Lorentz invariant action

Sy = —m / drertte (6.42)
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which is invariant up to total derivative under global supersymmetry trans-
formation (6.10) since

58y = —m/dT€F11@ = 7m/d7’37- (ert'o). (6.43)

And the action is also invariant under local world-line diffeomorphism.

Therefore, the complete action for D0-brane is

S=851+5 = —m/ N —1IIy - IydT — m/@FllédT (6.44)

where T = XH — @I'*O. The action gives the correct equation of
motion for X* and ©:

P.=0, (P-I'+mIl')O =0, (6.45)

where o
miloy

P, = —. 6.46

ko VI I (6.46)

6.1.2 Kappa symmelry

The action S is invariant under supersymmetric transformation (6.10) and
local world-line diffeomorphism. There is another symmetry of the action,
known as Kappa symmetry.

Let us take a close look of the underlying physics of this action. To this
end, let us re-write the action in the following way as we did for the massless
case using the conserved momentum P, as

S = /dT (1P —mor"é),
= /dT [PMX“ —O(P-I'+mI") é)] : (6.47)

which gives the expected correct equation of motion for both X# and ©.
From the last equality of (6.47) we see for the spinor contribution to the
acton that the appearance of the operator (P -I"+mI*') indicates, in a
similar fashion as in the massless case, that only half of the spinor components
enter into their dynamics and the other half do not participate the dynamics
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at all and simply decouple. This can be seen easily from the following

P-I' m
(P-T+mI) =P°r,(1+1° B0+ ﬁFOF“), (6.48)
where
P.T m 2 P-T m
0 011\ _ 0 011\ _
(F 70 +EF r ) =1, Tr(F 70 +EF r )_O. (6.49)
This implies that in a well-chosen basis,
P-T m
0 01l _ o 1
1+ I 70 +EFF = 2diag(1,---,1,0,---,0), (6.50)
16 16

which, when acting on ©, will project half of components of @ away.

The reason that we still need them is to express the spinor in a Lorentz
covariant form such that the Lorentz symmetry is manifest in the action S.
In other words, these half of the components of @ must be gauge degrees
of freedom and we should have 16 local fermionic gauge symmetry to gauge
them away'. In other words, that the action S must exhibit 16 local fermionic
gauge symmetry to gauge away them. Otherwise, this theory must be sick.
This kind of gauge symmetry, called k -symmetry.

The k-symmetry involves a variation 60, whose form is determined later,
combined with a transformation of the bosonic variables given by

Xt =0I"e = -50r+e. (6.51)
The transformation of II}' is therefore
SITY = Bpd XH — 66O — OI'*60

= —OI'"0 — 66I"6 — §6I'"6 — OT"0 (6.52)
= —266I"6.

The variation of the action S; under a x -transformation is

I, 01T} 1), 60O
6S :m/driu O — 9om [ dr—2—=
: V=1, 1L, Vo es3)

= —2m/dr§@7f11@ = Qm/dré’yfué@,

where we have defined

! The Majorana spinor © here have only 16 off-shell (the equation of motion is not
used) degrees of freedom, and 8 on-shell (the equation of motion is used) degrees of
freedom.
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IIy-rrt
v = N (6.54)
Note that o Frig, . i
v = e =1, Try=0. (6.55)
Thus we can use 7 to construct projection operator
P, = MTV P,P. =P P, =0, P?=Py. (6.56)

Now consider the variation of S under this transformation
65y = —m/chS@FHQ - m/dTéFHaé
= —m/dT5@F11@—m/dT [ao (erse) — éf“d@] (6.57)
~ —2m / dr60I"'6 = 2m / drO1r''60
Therefore, we obtain
68 =65, + 65, = —2m / dréOyI'6 — 2m / dréOrte
= me/ch?@(fy +1r1te = Qm/dTérll(—7 +1)66
= —4m / dr6OP, IO = 4m / drOI''P_so
Given the above, if we choose

00 = RP_

or equivalently
00 =P +R

where k is an arbitrary Majorana spinor, the action is invariant up to a total

derivative, since P_ Py = Py P_ = 0.

To summarize, the D0-brane action is invariant up to a total derivative
under xk-symmetry

80 =RkP_, 66XV =-RP_I"O (6.58)

or equivalently -
00 =Pk, 0XMH=OI'"P.k (6.59)
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The appearance of the projection operator P_ or P, in the above implies
that only half of ©® can be gauged away by the local fermionic x -symmetry
and those half of © are purely gauge degrees of freedom and have no physical
dynamics. The other point is that without this symmetry there would be the
wrong number of propagating fermionic degrees of freedom.

8§6.2 Green-Schwarz formalism for superstring

Generalized Nambu-Goto action.—Recall that in the bosonic string
chapter, we see that the natural generalization of the world-line action of
the DO-brane to the D1-brane (i.e., string) is the Nambu-Goto action

Snyg = —T | d*o+/—det Gap, (6.60)

where Gop = 0, X - 0pX. Here, we set T =1/ (¢/ = 1/2).
As we have discussed for DO0-brane case, we can take the substitution

Do XM = ITH = 0, X* — OATH9,04, (6.61)

where 64 (A =1,--- ,N) are spinors corresponding to A supersymmetries,
and the summation over repeated indices A are assumed. Thus, we have the

action L
Shag=—— /de/— det G o3, (6.62)
T

where Gop = I, - Ilg.

Generalized Polyakov action.—For the DO0-brane, we also discussed
the einbein field action, which in string case, corresponds to the Polyakov
action

Sp = % / do®/— det hh*?9,X - 95 X. (6.63)

We can also take the substituting (6.61) and set T' = 1/7, then the generalized
action is

T
Sk = -5 /da2\/—det hh*PII,, - 5. (6.64)
Similar as the DO0-brane action, there are two symmetries for both of the

actions:

e Local diffeomorphism of the world-sheet.
e Global super-Poincaré symmetry.

Exercise 6.3. Prove that the action Sk ¢ and Sp are invariant under local
diffeomorphism of world-sheet and global super-Poincaré symmetry.
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6.2.1 D =10 and N = 2 case

There are two superstring theories with A/ = 2 in spacetime dimension D =
10, known as type ITA and type IIB theories. For which ©4(A = 1,2) are
Majorana-Weyl spinors and the difference between two theories is that in
type ITA theory, ©! and @2 are of opposite chirality but in type IIB theory,
they are of the same chirality:

type ITA:  I''e4 = (—1)4+104, (6.65)

type IIB: I'''e4 = 04, (6.66)

We known that there are 8 bosonic degrees of freedom (8 transverse com-
ponents X* y = 1,---,8 in light-cone gauge), but 16 fermionic degrees of
freedom, this do not satisfy the requirement of spacetime supersymmetry.

Thus we need to introduce the kappa-symmetry to reduce the 16 fermionic
degrees of freedom to 8 fermionic degrees of freedom.

Kappa-symmetry for generalized Nambu-Goto action

In analogy to the discussion of the D0-brane, the bosonic variable transforms
under k transformations according to

SXH = OArH504 = 604 THOA, (6.67)

where 604 will be determined later.
This x-transformation implies

SITH = —2604 119,04 = 20,04 T+564. (6.68)

With this, for generalized Nambu-Goto action S}, we have (G = det Gop)

1 1

=G = fi(fc)*l/%sc = fi(fG)’l/zGGaﬁéGag
- % V=GGP6Gap = %V —GG*P21l, - 611 (6:69)
= -2V -GG*PI1"66°T,056".
Therefore we have
2 _
6She = p / d*oV/—GGPIT156T,0,04. (6.70)

The next step is to construct a second contribution to this action, namely
So, that also has global super-Poincaré symmetry and local world-sheet dif-
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feomorphism symmetry. Moreover, its Kappa variation §S3 should combine
nicely with 6S% so as to ensure Kappa symmetry of the sum S = S}, + So.

Here we will construct S using a more geometric method which is gen-
erally used in the construction of the world-volume theories taking the form
S1+S55 with S7 Nambu-Goto action and Sy Chern-Simons or Wess-Zumino ac-
tions. The action S should also have local diffeomorphism symmetry, there-
fore, it’s natural to describe it as an integral of a 2-form (25.

1
Sy = /92 = §/d2asaﬂga5, (6.71)

where (25 does not depend on the world-sheet metric, it’s a topological term.
More generally, for a Dp-brane, it would be an integral of a (p + 1)-form.
Such a geometric structure has manifest diffeomorphism symmetry.

Note that in the absence of background field and in the bosonic case, there
is no possibility for Sy. However, this will be possible in the presence of ©4
So all we need to consider is its supersymmetry and it must involve @4 and
vanishes when we set @4 = 0. The way to make the construction of 2, much
more easier is to use a trick to make the symmetry of the problem manifest
by formally introducing an additional dimension and considering the 3-from
23 = df)s, the world-sheet 2-dimensional manifold M should be regarded as
the boundary of the 3-dimensional manifold D. From the Stokes theorem,

/93:/ ng:/ 2. (6.72)
D D M=0D

To determine the expressions of {2, and (23, there are several useful formu-
las we will use frequently. Consider three Majorana-Weyl spinors, 11, 12, ¥3,
we have

IFappapall iz = 0. (6.73)

With this, we can prove that for any Majorana-Weyl spinor % in ten dimen-
sions, we have

Irdypdyp T, dy = 0, (6.74)
where the wedge product is assumed. The proof is left as an exercise.
Exercise 6.4. Prove the formulas (6.73) and (6.74).

It’s more easy to construct 23, so we will do it first and then turn to
25. Consider the global spacetime supersymmetry 604 = ¢4 and §X* =
EATHOA, there are three one-forms that are supersymmetric, namely,

det, de?, I*=dXx* - e2r*de” (6.75)

So {25 should be a Lorentz-invariant 3-form constructed out of them. Up
to a over constant factor ¢, which will be determined later, the appropriate
expression is

23 = ¢ (d6'T,d6" — dO6T,d6%) IT"- (6.76)
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The minus sign in the first factor in the above expression is required to ensure
that 23 is closed 3-form, i.e., df23 = 0. To check it, substitute the expression

dll* = —dO4r*e* = — (d6'I*do* + do*r+do?) (6.77)
into the expression of (23, we have

df23 =c (d6'T,d6" — d6°T,d6?) dIT"
=—¢(d6'I,dO" — d&°I,d6%) (dO'T*d6" + dO°T*d6?)
=—¢(d0'T,do'de' I"de" — d6*I,d0*do' I'*do*
+dO'I,d6'd6*T"dO? — d6°T,dO*d6* I'"d6?)
=—¢(d6'I,d0'de' T"de" — d6°I,d6*de° T d6?)
=0

(6.78)

where at the last step, we have used the formula (6.74).
To determine {25, we need to consider the kappa symmetry, we known that

5N52=/ 6H!22=/ 5 02s. (6.79)
M D

Thus we have §,.823 = di,.f25. The 5HS}VG has be given before, the kappa
symmetry requires that 6,5} + 0,52 = 0. With these preparation, let’s now
try to find the expression of (2. Let us now compute the kappa symmetry
variation of 23 (the subscript x is omitted here)
6025 =c (d6O'I,dO" + dO'I,dsO" — d66°I,dO* — d6°T,dsO*) II*
+¢(d®'T,d6" — d6°T,de”) 511"
=2c (dé(:)lfud@l - d5@2fud@2) i+
+ ¢ (dO'I},dO" — dO*I,d6?) (—2504'*dO™*)
=2cd (60'I,dO" — 66°I,dO?) IT*
—2¢(60' 10" + 66*I'"*dO?) (d6'I,dO" — d6°I,d6?)
=2cd (60'I,dO" — 66°T,,dO%) II*
—2¢(—00'T*d6"d6I,dO* + 66°I'*d6*d6"' I,dO")
=2cd (06'I,dO" — 66°T,dO?) II" — 2¢ (60'I},dO" — 66°I,dO%) dII"
=2cd [(66'I},dO" — 66°T,dO*) IT"] (6.80)
where in the next to the last line we have used dIT* = —dOAT'*d6* and the

formula (6.74) is again used in the derivation.
Since 8§23 = dd {25, we have

662 = 2¢(60'T,dO" — 66°I,dO?) I" (6.81)
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Compare with the expression of 65}, we can set ¢ = 1/, then
2 - _
08y = = / d*0e? (60'1,0,0" — 66°T,050%) ITf. (6.82)
Thus the total kappa-variation of the action .S is

55 =551 + 58, = % / 2oV=G { G 1130°T,0,0"

(b . 1 _2 , (6.83)
+m [6@ I,0,0" — 60°I,0,0 ]Hg}
To analyze it, we need the following formulas
gh o o N
g~ (emaT - avan), (0:80)

this can be easily checked for all corresponding indices. And another one is
FpUF[L = nuan - nﬂpFU + Fpa‘;t (685)

where we used the abbreviation

1 .
Loy oo = F[,ul T Fﬂn] = nl Z Slgn(U)Fa(l) T Fa(n)' (6.86)
oES,
is

A useful formula for I',,...,.,

011, .., 09 = (—1)"" V20,1,

o. (6.87)

n

Exercise 6.5. Prove the formulas (6.84),(6.85) and (6.87)
From the identity (6.84), we have

€1l

eaﬂﬁ = V-G (GG? — G*G") (6.88)
and
af3 675 o w
¢ \/jn,gn(S LoD, 114

=— V=G (GG — GG I IIZ 1T (nuo Ty — Nupl's + Lpop)
=— V-G (GG - G¥G") I I 1T (o L — yup )

=— V-G (GG — GG (Gsp I, I1L — G, 117

= —2V-GG*’I,I1Y

(6.89)

where we have used that Gng := Il - IIg. Therefore, we have
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1z YIS,

po
V-GG*’T, 11} = —5¢ TF”HEL = ey, 1Y (6.90)
where 5
e“PITHITY T,
O (6.91)
2v/-G

Then the kappa variation of the action becomes

2 _ )
58 == / 0 {V=GG 66" T,0,0' 1T} + V-GG 36°T,0,0%11),
s
(6.92)
+6°7 [00 T,0,0" ~ 66°1,0,0%| 1T} | (6.93)

:% / PP [(selHT”ruaa@l —5921_77&8&@2] o (6.94)

4 o - _
- /d%e 5 601 P, I,0,0" — 60°P_T,0,0%] IT" (6.95)
We can check that
=1, Try=0. (6.96)
The square of y is
1 « 14 2 1 « « 171 1%
72 = e (e*PIIHITYT,,)” = ~3a° Vg B [ T T2 T2 { Ty s Do
(6.97)
Using the identity
{FHIVI ’ FMQVz} = _277,“1#2771/11/2 + 277#1112771/1/42 + 2FH1V1M2V2 (698)

and noticing that the I, ., 1,1, term does not contribute, one obtains

1
72 - Egalﬁlgoﬁﬁz (G0116¥2G5152 - Ga152G510¢2) =1 (699)
The trace of v equals to zero is easy to check.
As we have discussed for D0-brane case, this means

==

P
+ 2

(6.100)
are projection operator with P? = Py and PP = P_P, = 0. With the
above preperation, we see that, if we choose the kappa-symmetry transfor-

mation as - -
60 =R'P_, 667 =FR*P, (6.101)

or
0! = P k!, 60? = P_g? (6.102)
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for arbitrary Majorana-Weyl spinors x', k2 of appropriate chirality (x; and

Ko have the same chirality with ©; and ©5 respectively), then §S = 0. Given
P, as projection operators, the above local fermionic gauge transformations
can be used to gauge away half of the ©4.
Let us now construct {25 from the (23 via {25 = df2,. For this,
23 =c (d®'I,dO" — d6°T,d6%) "
=c(d6'I,d6" — d&°T,d6%) dX*
—c (d@lfud91@2ﬂ‘d92 — @_1F“d91d@2fud@2)
=cd [(0'I,d0" — 6°1,dO%) dX" — 6'T,dO'0°*T'"d6?] .

(6.103)

So we have (¢ =1/7)

2y =c[(0'T,d0" — 6°I,d0?) dX" — O',d0'&°T"dO?| . (6.104)
‘We therefore have the action Sy as
S = %/ [(6'[,do" — 6°T,dO%) dX! — 6'T,d0"6*I'"d6?]

1 _ _ _ _
= / PP [(0',0,0" — O°I,,0,6%) 93 X" — 6'1,0,0' 0T 9367

(6.105)
Altogether, the k-invariant action for the string is

S = Syg + Se. (6.106)

Other Dp-branes, some of which will be discussed in later chapters also have
world-volume actions with local k-symmetry. One example is the 11—D super-
membrane world-volume action. Other examples contain additional world-
volume fields besides X* and ©4. For example, the D-brane world-volume
action also contain U(1) gauge fields.

§6.3 Quantization of Green-Schwarz superstring






Index

classical Virasoro algebra, 25
Dirichlet boundary condition, 15
einbein field, 10

ghost, 31, 99
Green-Schwarz action, 102, 111

light-cone gauge quantization, 37

mass-shell condition, 33, 94
mode expansion, 21

Neumann boundary condition, 15
oscillator expansion, 21

physical state condition, 93

RNS string, 73

spurious state, 34, 99

Virasoro constraint, 21
Virasoro generator, 31

119



