Zhian Jia | BA17038003 String theory Homework 02

Problem 1 Compute the mode expansion of an open string with Neumann boundary conditions for the
coordinates X0, ..., X?* while the remaining coordinate X25 gatisfies the following boundary conditions:
(i) Dirichlet boundary conditions at both ends

X®(0,7) =X and X®(m,1) =X

What is the interpretation of such a solution? Compute the conjugate momentum P%. Is this momentum
conserved?
(ii) Dirichlet boundary conditions on one end and Neumann boundary conditions at the other end

X®0,7) =X and 9,X®(m,7)=0

What is the interpretation of this solution?

Solution.

Since the equations of motion is 92X* = 0, we see that they are 26 independent equations. Thus they
can be solved in their own boundary conditions for each u. For y =0, - - - ,24, they are open string with
Neumann boundary condition, thus the general solution is of the form

1 .
Xt(t,0) = x* + 2ptt + il ) —ah,e™ ™ cos(mao). (1)
m70 m
Now consider the case for p = 25.
(i)The Dirichlet boundary condition X*(0,7) = X3° and X?*(7, 7) = X%. The equation of motion is
92X% = 0.
The solution is familiar for us from partial differential equation course,

X® =F(e")+G(o7).

From boundary condition at o = 0, X*(0, 1) = X3°, we see F(1) + G(1) = X3°, thus G(1) = X?* — F(7).
Now we can set the solution to be

X®(0,7) =F(c") — F(o™) + X%.

Now from the boundary condition at o = 7, X**(7r,7) = X%, we see F(t+ ) — F(t+ 1) — X3 = X%.
Here, to introduce the Fourier expansion, we must first construct a periodic function H(A) := F(A — ) +

25_ w25 25_ w25
W, or equivalently F(A) = H(A + ) — X=X A gy 5 easily checked that H(A +2m) = H(A),

21
thus we can expand H(A) as '
H(A) = Y Bue ™.
nez
25_ w25 .
To make H(A) real, we have B_, = B5. Thus F(A) = HA + ) — w = Y ez Pne AT
(X2 —XD)(A+m)
27 :

Now we are at a position to give the general solution.

X®(o,7) =F(c") — F(c™) — X%

— —in(ot+m) _ (X = XP) (o +7) _ —in(c™+m) _ (XF - XP) (e +n) 25
N Z Pue 21 Z Pne 27 Xy
nez nez
. X25 _ X25
=—2i )" Bu(—1)"e " sin(no) + X3 + L—0 — 0 o )
n#0

By setting ay, 1= —2iB,(—1)"n/v/2a’, we get the general solution

a 25 X7215 — X(2)5 1 —InT o;
X=X+ TU-"- V2a! Z ~ne sin(no). 3)
n#0

Problem 1 continued on next page. .. -1-
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(ii) To make things more convenient, we introduce & = 7w — ¢. Then the form of equation of motion
remains unchanged (92 — 32)X%(, 1) = 0. Firstly, X2(5,7) = F(61) + G(6) and X®' = F/(5") —
G'(#7). The right boundary condition becomes 9;X?°(& = 0,7) = 0, we see that F/(t) — G'(t) = 0,
hereinafter the derivative is for ¢. This boundary condition implies that we can take G(A) = F(A) + C.
Thus the solution can be taken as

XB(F,T)=F@")+F@ ) +C

The left boundary condition is now X* (& = 7, 7) = X3°. This implies that F(t + 1) + F(t — ) + C =

_x25
X%. In a similar way as in (i), we introduce a new function H(A) := F(A — ) + < 2X° . It’s easily checked

that H(A +2m) + H(A) = 0, thus H(A +4m) = —H(A +2m) = H(A), thus it is a periodic function with
period 47t. Thus we can take the Fourier expansion as

H()\) — Z ﬁne—in/\/Z.

nez

Then from H(A +27) + H(A) =0,
H()L) — Z ane—inne—in/\/2 — _ Z ’Bne—in/\/2,

nez nez
this implies that 8, = 0 for n even. To make H(A) real, we also have B_, = B;. Therefore H(A) =
ZnEZOdd aneimA/z'
_y25 .
We now at a position to give the general solution. Since F(A) = H(A) — < 2X° = YneZouq Bre~in(At+m)/2 _

c-Xx3°
2, we have

X(F,t)=F@")+F@ )+C

:X(%S + Z ﬁne—in(&Jr-‘rTL')/z + Z ‘Bne—in(ﬁ'7+7f)/2
VlGZodd TZGZOdd

=X+ Y, e 2B "/ 22 cos(ni/2) (4)
nGZodd
Now we can define &, = _2ipe 2 1, we obtain the general solution
N &

. 1 i
X®(0,7) =X3° +iv2a/ ) Etxne_l””z cos(nd/2)
n€Zodd

. 1 ;
=X +ivV2a Y —ane "2 cos(n(m— ) /2)
nEZOdd

FXP VI Y Sae /200 2 sin (g 2) )

nEZOdd

O

Problem 2 Use the mode expansion of an open string with Neumann boundary conditions in Eq. ( 2.62)
and the commutation relations for the modes in Eq. ( 2.54) to check explicitly the equal-time commutators

X*(o,7), X" (¢, 7)| = |P"*(0,7),P" (¢, T)| =0
e (o)) = [prom ()]

while

{X“((r, T),PY ((7’, T)] =inhs ((7 - U’)

Problem 2 continued on next page. .. -2-
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Hint: The representation 6 (¢ — ') = L ¥, ., cos(nc) cos (no’) might be useful.
Solution.
Recall the commutators

[0‘51/0‘];1] = mﬂy]}‘sm—&-n,Or (6)
[x*, p"] = it @)

with all others zero. The momentum P# = TX*. The mode expansion of an open string with Neumann
boundary conditions is

1 .
XH(t,0) = x* + 2ptt 4 il ) atxﬁle_”’” cos(mo), 8
m70

the momentum takes the form

P'(t,0) =TI ) ahe ™M cos(mo), )
meZ

where af) = Isp#, T = 1/(27’) and 12 = 24/

Firstly, for [XV(U, ), X" (o, T):| , in the mode expansion form

) 1 ; . 1,
[xF 4+ Zplt +ils ) Ea%e*”’” cos(me), x¥ + 1Zp't +ils ¥ Ea‘r’,e T cos(no’)]

m#0 n#0
1 1 .
=[x, 2p¥] + [I2p*, 2V + I Z T cos(ne’)[ah, al] +1s Y —e —ImT cos(mo’ ) [ahy, al]
n;&O m;éO
+ Y Z ”"Jr”)rcosmacosna’[a%,zxm
m#0 n;é()
=) Z 1m+1)7T 005 mo cos no [y, a]
m#0 n£0 mn "
=) Z e~ 1MHENT 005 mor cos no’ myt Sy o
m#0 n;éO
1
=" Y = cos(—no)(cosno’)
n#0 n
400 1 400 1
=" () = cos(—no)cosno’ — Y = cos(—no) cosno’)
n=1" n=1"
=0, (10)

where we have used the property that 1 cos(—nc)(cosno’) is an odd function with respect to 7.

Secondly, for [PV(U, T), PV (¢, T)} , in the mode expansion form

[Tl Y ahye ™ cos(mo), Tls Y ale™" cos(no”)]

meZ nez
=T%12 Y Y e ™ cos(mo)e " cos(no’) [y, 4]

meZ neZ
=T%12 Y Y 7™ cos(me)e™ " cos(no’ ymnt Syn0

meZneZ
=T%Zy"" Y_ (—n) cos(—no) cos ne’

nez

=0, (11)

Problem 2 continued on next page. .. -3-
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here we again used the property that (—n) cos(—nc) cos no’ is an odd function with respect to .

Finally, for the case of [XV(U, T),PY ((T’ , T)} , expanded in the oscillation modes

1 , ,
[xF + 12prT+ils Y %a%eﬂmr cos(ma), Tl Y ape """ cos(no’)]

m#0 nez
=[x", Tlsat] + 12TT Y e~ cos(no’)[al), a]
nezZ
1 ,
+ilZT Y Y —e "™ cos(mo)e """ cos(no’) [y, ap]
mA0nez M
1 . ,
=TIV, p']+il3T Y, Y —e "™ cos(mo)e™ " cos(no” ) mn"" 8y in0
m#0nezZ
=TIZin" +ilZTy" Y cos(mo) cos(—mo’)
m##0
=TIZin" Y cos(mc) cos(—mo”)
meZ

=T2in" 7é(c — ')
=in"é(o —o’),

as we expected.

Problem 3 Drive the Hamiltonian for closed and open string in mode expansions.

—+o0
H = Z (Wp -y + 0y -0y,
n=—oo
1 =
HZE Z ﬂé_n‘an.

n=—oo

Solution.
Firstly, consider £ = T (X2 — X'2), P¥ = 6£/6X, = TX", the Hamiltonian density is

. T .
H=X,P'—L= E(XZ + X?).
Let us first consider the closed string case.
Xt =09,X}(c7) +0-Xk(o7)
XF =3, XV (ot) —9_Xh(o)

where o
E)_Xg((f*) = 1Y ez the 2
8+Xz(0'+) = ls ZmEZ 5(%(3_2in0'+

From which we have

(12)

(13)

(14)

(15)

(16)

17)

- . . _»9j + _9i(not - ~ 9i(no— + _nj -
X2 — lg 2 (zxn-ame 2i(n+m)o N S 2i(not +mo )+l¥n Rl 2i(noc~ +mo )+06n'04m€ 2i(n+m)o )

nmez

Y I v _ el +
X2 — lsz Z (zxn Rpe 2i(n+m)oet _ Ay - e 2i(net4+mo=) _ Ay - Byl 2i(no~+mo™) +ay,
nmeZ

.lxm

e—Zi(n-&-m)U’)

Problem 3 continued on next page. ..
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Thus

H=TIZ Y (d - e 2000 g o2 m)o
nmeZ

Then integrating over ¢ and using the formula fon e 2K dg = 716; o, we have

s
H= / Hdo
0
2 P & —2i(n+m)o™ & —2i(n+m)o—
=TI} Z (ocn-txm/ e d(T—l—zxn-ocm/ e do)
nmeZ 0 0
_ le. Z (&n . &me_Zi(n+m)T7T5n+m/0 + oy, '“me_Zi(n+m)T7T5n+m,O)
nmeZ
== Z (len . “n +’0\27n 'EZn) (18)
nez

as expected.
For the open string, the procedure is completely the same.

20 XF =X+ XN =15 Y aleim(To), (19)
m=—oo

from which we have

Xt =1 Y ahe ™ cosmo
mezZ

Xt = —ilg Y ahe ™" sinmo (20)
meZ

These implies that

X2 =1 Y ay e MT (o5 e cos no

mmnezZ
X? = —I2 Z &y - e T gin o sin no (21)
mmneZ
Therefore, the Hamiltonian density is
T, —i(n+m)t
H==I2 ) an-ape cos(m +n)o, (22)
2 mmneZ

Then by integrating over ¢ and using the formula fon cos ko = 7y 9, we obtain

T
/ Hdo
0

T, —i(n+m)T T
=I5 Y an-ape / cos(m+n)o
2 mneZ 0
T .
= Els Y an e TS o
mneZ

H

1
= 5 Z ®_ply (23)
nez

as expected. O
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Problem 4 Prove the Poisson bracket for Virasoro generators
[Lm/ Ln]PB = _i(m - n)Lern' (24)

Solution.
This can be proved by directly calculating, to do this let us first calculate

[Lm/ [X:]PB

1
=3 2 [‘%_k("‘y)kr ag|pB
keZ

1 ) .
=5 Yo, (=in kbys0) — i(m — k)™ S ks 0(0)i)
keZ
:i5“1r;1+s (25)
Now consider the commutator

Ln]PB

[

g

h
g

@, (@)ples

X
S=

,p[Lmr (“y)p]PB + [Lm, “pr]PB (“V)P

(W pip ()t p + 00 = P ) (@)

/

i(p

NI~ NI~ NI~ NI~

<M <M = =~

1 .
- m)“nerfp’ TRy + ) ZZ(TZ - P)D‘ern—p “&p
14

~.

(m - n)Lm—i-n/ (26)

Note that in the last step we have introduced p’ = m + p and changed the dummy summation subscript p’
to p. O

Problem 5 Drive the formula for Lorentz generators
wv oV Vol o 1 Hov v M
M"Y = xtp¥ —x"p —zzg(a,ntxn—a,nan) (27)
n=1

and the commutator
[Ly, MF'] =0 (28)

Solution.
For Lorentz generators, recall that the density is MM = XFPV — XVPH

Vs Vs
MW — / MW = T/ (X"XV - XVX") do
0 0

Now for the mode expansion of open string

1 ,
Xt(t,0) = x' + 2plt+ils Y —alye ™ cos(mo) (29)
m#0 m
X'(t,0) =12p" +1s Y ape """ cos(no) (30)
n#0

Problem 5 continued on next page. .. -6-
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and T =1/ (nl§> . A short calculation gives

MW = xtp¥ — x"pt —i Z ( Déliml’éﬁl)

Note that here we have used [ cos mo cosno = Z(Sun + 6m,—n)-

For the commutator, recall that [L,, af]pp = isa},, s as what we have shown in Eq. , quantum
mechanically i[-, -]pp — [+, -], it becomes [L,,;, a¥] = —sa}, . ; and we can also calculate [L,;, x'] = —ilsa}, and
[Lim, p’] = 0. Thus

[Li, MM] =[Ly, xMp"] — [Lyn, x"p"] — i Z [, & al — a¥ 4]
= ils(“%pv - ’Xyrzpy) —1 Z (“ﬁ n“ —a ’Xm+n + (X,n %Jrn - ‘Xlr/nf'rz“%)
n=1
=t 1
= i(“ﬁﬂxg - oclr/n“g) —1i 2 (0‘51711“1;1 - a}in’xvm-&-n + Uév_n(xinJrn - “]r/n—naz) (31)
n=1
For m = 0, it is obviously equal to 0.
For m # 0, the right hand side of Eq. is
RHS = ((X},ZIXO —ay, ‘XO —1i Z Xyl m n“lr/ll) —i Z (_‘Xﬁnavmqtn + ‘xlinlxsﬁ-n)
n=1
= —i(aaf — ahal) —i Z ah,_ o) —i(ahal, — abah)+
o
[_l 2 (“1’111771“1;1 - _Z 2 7n m+n + ’X—n“ilwrn)]
n=m-+1 n=

(32)

We see that the first term cancels the third term and the second and the last terms both equal to zero, thus
we complete the proof. O
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