Problem 1 Derive the OPE

$$
T(z) X^{\mu}(w, \bar{w}) \sim \frac{1}{z-w} \partial X^{\mu}(w, \bar{w})+\cdots
$$

What does this imply for the conformal dimension of X^{μ} ?
Solution. Recall that $T=-2: \partial X \cdot \partial X:$, then we have

$$
T(z) X^{\mu}(w, \bar{w})=-2: \partial X \cdot \partial X: X(w, \bar{w})
$$

The trick we are going to use is the Wick theorem, thus, we need to deal with the contraction $\left\langle\partial X^{\mu}(z) X^{\nu}(w)\right\rangle$. Notice that

$$
\left\langle X^{\mu}(z, \bar{z}) X^{v}(w, \bar{w})\right\rangle=-\frac{\eta^{\mu v}}{4}(\ln (z-w)+\ln (\bar{z}-\bar{w}))
$$

from which we have

$$
\left\langle\partial X^{\mu}(z) X^{v}(w)\right\rangle=-\frac{\eta^{\mu \nu}}{4(z-w)}
$$

Using this contraction, we have

$$
\begin{align*}
T(z) X^{\mu}(w, \bar{w})= & -2: \partial X \cdot \partial X X(w, \bar{w}):-4 \partial X^{v}(z)\left\langle\partial X_{v}(z) X^{\mu}(w, \bar{w})\right\rangle \\
& =\frac{\partial X^{\mu}(z)}{z-w}+\cdots \tag{1}
\end{align*}
$$

Notice that $\frac{\partial X^{\mu}(z)}{z-w}=\frac{\partial X^{\mu}(w, \bar{w})}{z-w}+\cdots$, we thus have $T(z) X^{\mu}(w, \bar{w}) \sim \frac{1}{z-w} \partial X^{\mu}(w, \bar{w})+\cdots$. This means that the conformal dimension of X^{μ} is $h=0$.

Problem 2 (i) Use the result of the previous problem to deduce the OPE of $T(z)$ with each of the following operators:

$$
\partial X^{\mu}(w, \bar{w}) \quad \bar{\partial} X^{\mu}(w, \bar{w}), \quad \partial^{2} X^{\mu}(w, \bar{w})
$$

(ii) What do these results imply for the conformal dimension (h, \tilde{h}) (if any) in each case?

Solution. (i) The result can be directly take the derivatives over w and \bar{w} with $T(z) X^{\mu}(w, \bar{w}) \sim$ $\frac{1}{z-w} \partial X^{\mu}(w, \bar{w})+\cdots$. The results are

$$
\begin{gathered}
T(z) \partial X^{\mu}(w)=\frac{\partial X^{\mu}(w)}{(z-w)^{2}}+\frac{\partial^{2} X^{\mu}(w)}{z-w}+\cdots \\
T(z) \bar{\partial} X^{\mu}(w)=\frac{\partial \bar{\partial} X^{\mu}(w, \bar{w})}{z-w}+\cdots \\
T(z) \partial^{2} X^{\mu}(w)=\frac{2 \partial X^{\mu}(w)}{(z-w)^{3}}+\frac{2 \partial^{2} X^{\mu}(w)}{(z-w)^{2}}+\frac{\partial^{3} X^{\mu}(w)}{z-w}+\cdots
\end{gathered}
$$

(ii)For an operator \mathcal{O} with conformal dimension (h, \tilde{h}), the OPE with T and \bar{T} takes the form

$$
\begin{aligned}
& T(z) \mathcal{O}(w, \bar{w})=\ldots+h \frac{\mathcal{O}(w, \bar{w})}{(z-w)^{2}}+\frac{\partial \mathcal{O}(w, \bar{w})}{z-w}+\ldots \\
& \bar{T}(\bar{z}) \mathcal{O}(w, \bar{w})=\ldots+\tilde{h} \frac{\mathcal{O}(w, \bar{w})}{(\bar{z}-\bar{w})^{2}}+\frac{\overline{\mathcal{O}}(\bar{w}, \bar{w})}{\bar{z}-\bar{w}}+\ldots
\end{aligned}
$$

To determine, we also need to calculate the following terms

$$
\tilde{T}(\bar{z}) X^{\mu}(w, \bar{w})=\frac{\bar{\partial} X^{\mu}(\bar{w})}{(\bar{z}-\bar{w})^{2}}+\frac{\partial^{2} X^{\mu}(\bar{w})}{\bar{z}-\bar{w}}+\cdots
$$

By taking derivatives, we obtain the similar result as the above, but we won's do it here.
Thus from the result of (i), we can only infer the conformal dimesnion h of each field. For three fields $\partial X^{\mu}(w, \bar{w}) \quad \bar{\partial} X^{\mu}(w, \bar{w}), \quad \partial^{2} X^{\mu}(w, \bar{w})$, they are respectively 1,0 and 2.

Problem 3 Show that

$$
\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=\left[\widetilde{\alpha}_{m}^{\mu}, \widetilde{\alpha}_{n}^{v}\right]=m \eta^{\mu \nu} \delta_{m+n, 0}, \quad\left[\alpha_{m}^{\mu}, \widetilde{\alpha}_{n}^{\nu}\right]=0
$$

by using the OPE of the field $\partial X^{\mu}(z, \bar{z})$ with itself and with $\bar{\partial} X^{\mu}(z, \bar{z})$
Solution. Recall that the derivatives of $X^{\mu}(z)$ are

$$
\partial X^{\mu}(z, \bar{z})=-\frac{i}{2} \sum_{n} \alpha_{n}^{\mu} z^{-n-1}, \quad \bar{\partial} X^{\mu}(z, \bar{z})=-\frac{i}{2} \sum_{n} \tilde{\alpha}_{n}^{\mu} \bar{z}^{-n-1}
$$

it follows that

$$
\alpha_{m}^{\mu}=\frac{1}{\pi} \oint d z z^{m} \partial X^{\mu}(z, \bar{z}), \quad \tilde{\alpha}_{m}^{\mu}=\frac{1}{\pi} \oint d \bar{z} \bar{z}^{m} \bar{\partial} X^{\mu}(z, \bar{z}),
$$

where integration is performed over some contour around $z=0$ pole point.
Thus we have

$$
\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=\frac{1}{\pi^{2}} \oint \oint d z d w z^{m} w^{n}\left(\partial X^{\mu}(z, \bar{z}) \partial X^{v}(w, \bar{w})-\partial X^{\nu}(w, \bar{w}) \partial X^{\mu}(z, \bar{z})\right)=m \eta^{\mu v} \delta_{m+n, 0}
$$

Note that here we have used the result

$$
\begin{equation*}
X^{\mu}(z, \bar{z}) X^{v}(w, \bar{w})=-\frac{\eta^{\mu v}}{4}(\ln (z-w)+\ln (\bar{z}-\bar{w})) . \tag{2}
\end{equation*}
$$

Doing the same kind of calculation, we also have $\left[\widetilde{\alpha}_{m}^{\mu}, \widetilde{\alpha}_{n}^{v}\right]=m \eta^{\mu v} \delta_{m+n, 0}$.
For the case of $\left[\alpha_{m}^{\mu}, \widetilde{\alpha}_{n}^{v}\right]=0$, taking derivative with z and \bar{w} of Eq. 22, we have

$$
\begin{equation*}
\partial X^{\mu}(z, \bar{z}) \bar{\partial} X^{v}(w, \bar{w})=0 \tag{3}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left[\alpha_{m}^{\mu}, \widetilde{\alpha}_{n}^{v}\right]=\frac{1}{\pi^{2}} \oint \oint d z d \bar{w} z^{m} \bar{w}^{n}\left(\partial X^{\mu}(z, \bar{z}) \bar{\partial} X^{v}(w, \bar{w})-\bar{\partial} X^{v}(w, \bar{w}) \partial X^{\mu}(z, \bar{z})\right)=0 \tag{4}
\end{equation*}
$$

Problem 4 Consider a conformal field $\Phi(z)$ of dimension h and a mode expansion of the form

$$
\begin{equation*}
\Phi(z)=\sum_{n \in \mathbb{Z}} \frac{\Phi_{n}}{z^{n+h}} . \tag{5}
\end{equation*}
$$

Using contour-integral methods, like those of Exercise 3.2, evaluate the commutator $\left[L_{m}, \Phi_{n}\right]$.
Solution. Recall that from the energy-momentum tensor we have

$$
L_{m}=\frac{1}{2 \pi i} \oint d w T(w) w^{m+1}
$$

Thus we have the following result

$$
\left[L_{m}, \Phi_{n}\right]=\frac{1}{2 \pi i} \oint d z z^{n+h-1} \frac{1}{2 \pi i} \oint_{\Gamma} d w T(w) \Phi(z) w^{m+1}
$$

where Γ is some contour of w around z.
Recall that OPE for $T(z)$ and $\Phi(z, \bar{z})$ is $T(z) \Phi(w, \bar{w})=\frac{h}{(z-w)^{2}} \Phi(w, \bar{w})+\frac{1}{z-w} \partial \Phi(w, \bar{w})+\ldots$, using this formula to do the integration, we obtain

$$
\begin{equation*}
\left[L_{m}, \Phi_{n}\right]=\frac{1}{2 \pi i} \oint d z z^{n+h-1}\left(h(m+1) z^{m} \Phi(z)+z^{m+1} \partial \Phi(z)\right) \tag{6}
\end{equation*}
$$

From the Laurent expansion

$$
\begin{equation*}
\Phi(z)=\sum_{n \in \mathbb{Z}} \frac{\Phi_{n}}{z^{n+h}} \tag{7}
\end{equation*}
$$

we see that

$$
\Phi_{n}=\frac{1}{2 \pi i} \oint d z \Phi(z) z^{n+h-1}, \quad \frac{1}{2 \pi i} \oint d z \partial \Phi(z) z^{n+h}=-(n+h) \Phi_{n}
$$

Substituting the result into Eq．（6），we obtain

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint d z z^{n+h-1}\left(h(m+1) z^{m} \Phi(z)+z^{m+1} \partial \Phi(z)\right)=-(n+m(1-h)) \Phi_{n+m} \tag{8}
\end{equation*}
$$

Thus $\left[L_{m}, \Phi_{n}\right]=-(n+m(1-h)) \Phi_{n+m}$ ．
贾治安 \｜BA17038003 \｜April 8， 2020

