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Problem 1 Considcr a massless supcrsymmctric particle (or supcrparticle) propagating in D -dimensional
Minkowski space-time. It is described by D bosonic fields X*(7) and D Majorana fermions ¢* (7). The

action is .
So = /dr <2X%X,4 - ilph/;y)
(i) Derive the field equations for X*, ip*.
(ii) Show that the action is invariant under the global supersymmetry transformations

XM =iept, Syt = %EX?‘

where ¢ is an infinitesimal real constant Grassmann parameter.

(iif) Suppose that 41 and J; are two infinitesimal supersymmetry transformations with parameters ¢;
and ¢, respectively. Show that the commutator [d1, J;] gives a T translation by an amount §7. Determine 57
and explain why 67 is real.

Solution.

(i) The Lagrangian is L = %XP‘XP, — iy, using the Euler-Lagrange equation for X*, we have the
equation of motion

Xt =o. (1)
Similarly, for fermionic part, we have
d , ,
BTV,EL’VEL’# =Y @)
and
0 i o, 0 . 3
all]vlp lpﬂ - —llJ alpvlpﬂ - _l/JV ( )
Then using the Euler-Lagrange equation, we obtain the equation of motion as
lpv =0. 4)

(ii) The symmetry transformation is

{5).(14 = 1'81/';14, (51/'% = %e}éﬂ ®)
OXH = iegt, Syt = LeXn
The variation of the action is
050 = /dT(’?wislﬁVXV - %sx}ll/;’vﬂw - il/’vésxy’?w)
= /d'r(rywisX”¢" — i%sX”lP”UW + i%SXHlPVWv)
- i% / dT%(X”lpvﬂw) (6)

. T
Under the condition that X*¢"77,,, !
T
invariant under the symmetry transformation.

(iii) Since we have the supersymmetric transformation

= 0 (this is usually chosen as X”t[ﬂ’iyw = 0 at 7; and Ty), the action is

. 1 .
5]‘XM = zsjlpV, (5]1’[,7” = EEJ'XH 7)

for j = 1,2. Now let us calculate the action [d1, §,] over the bosonic and fermionic fields

(6102 — 6,01) X = é (e261 — £162) X" = STXM )
i L
(5152 — 52(51) l/)y = 5 (8281 — €1€2> l[Jy = 5”['1/]# 9)

Problem 1 continued on next page. .. -1-
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Note that here we have used the anti-commuting relations between ¢; and ¢, and using = indicate the the
relations that [1, d;] is actually the T traslation. We see that
i
0T = 5(8281 —€162). (10)
Since ¢ is Majorana field, it is real. From the variation of bosonic field §; X" = ie;ip¥, we see that ¢; must be
imaginary number, thus we conclude that 47 is real.
O

Problem 2 In Problem 4.1, supersymmetry was only a global symmetry, as ¢ did not depend on 1. To
construct an action in which this symmetry is local, one needs to include the auxiliary field e and its
fermionic partner, which we denote by x. The action takes the form

~ XrX, iXH .

e

(i) Show that this action is reparametrization invariant, that is, it is invariant under the following
infinitesimal transformations with parameter ¢(7) :

SXM = EXH, Syl = Epi
de = L (Ze), ox = £(Ex)

(if) Show explicitly that the action is invariant under the local supersymmetry transformations

1 /.
OXM = eyl oyt = — (X" - ixlp%) e
ox = ¢,0e = —ixe
(iii) Show that in the gauge ¢ = 1 and x = 0, one recovers the action in Problem 4.1 and the constraint
equations X2 =0,X -1 =0
Solution.
(i) Consider the infinitesimal transformation T — T — ¢(7), we have

SXH = EXH, Syt = gyt
SXM = EXM 4 EXF, SpF = EgpF + CH
de=4(ge),  ox=L(Ex)

Thus the variation of the action is

55 — /dT OXIKy KRy IOXpx | IXNOX XX X
e 2¢2 e e e 2

— (09" )iy — i¢u5¢’”>

i (XX, ety

which is an integration of total derivative, thus vanishes. The action is invariant under reparameterization.
(ii) The variation of the action is

. SXHX XtX i(SXH i XH (5 i X1, 6 | XH
(550:/dT po ;456+1( )%X+1 (%)X+1 YuoX _ IXTPuX o
. e 2¢2 e e e e2

S——

d (i .
:/d'r% (;eezpyXV) (12)

Problem 2 continued on next page. .. -2-
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We have repeatedly used the anti-commuting relation of Grassmann numbers here. Since the variation
is an integration of total derivative, thus vanishes. The action is invariant under the supersymmetry
transformation.

(iii) The equation of motion for field x is obtained from §Sy/8x = 0, which is obviously

X-¢p/e=0.
Similarly, for e, the equation of motion is

XtX,  XPpux _
2¢2 e?

0.

In the gauge e = 1 and chi = 0, we have the equation of motion X?> = 0, X - = 0, and the action becomes

So= [ ar GXVXM - ilpﬂlpﬂ)

Problem 3 Consider quantization of the superparticle action in Problem 4.1
(i) Show that canonical quantization gives the equal-T commutation and anticommutation relations

[X",XV} =ip" and {y' '} =y

(ii) Explain why this describes a space-time fermion.

(iii) What is the significance of the constraints X?> = 0 and X - ¢ = 0 obtained in Problem 4.2?
Solution.

(i) To do canonical quantization, we first consider the equation of motion

XM =0, (13)

the general solution (mode expansion) is X* = x* + p#t.

Similarly, for fermions, we have the equation of motion " = 0, the general solution is " (t) = f#, here
f# are D Majorana fermions.

The canonical quantization for bosonic and fermion modes are

[H Pt =™, A = (14)
all other commutators vanish. Now the fermionic anti-commutator {¢*,¢"} = 5" is obvious. For the
bosonic part, recall that X* = p#, thus we have [XP‘, XV} = inhv.

(ii) To answer this question, we need to analyze the physical states. It’s obvious that there are two
parameters to label a quantum state |k; f) where k is the momentum and f for fermionic quantum number.
The vacuum state is the zero-momentum state p#|0; f) = 0. But there are still fermionic freedom, which
means that the vacuum is the space-time fermions. Similarly, for excited state p* |k¥; f) = k*|k¥; f), which
is the non-zero momentum states, since the existence of the fermionic quantum number, they are also
spacetime fermions.

(iii) Recall that X* = p#, and relativistic energy-mass equation p?> = X? = m
X? = 0 means that the spacetime fermions are massless.

To analyze the constraint X - ¢ = 0, let us introduce the Dirac matrices 7" = % f#, from the commutation

2 we see that the constraint

relation of Majorana fermion f*, we obtain the commutation relation of Clifford algebra

{2 =29 (15)

The vacuum forms a representation of the Clifford algebra (also known as Dirac algebra) Cl; p_1. We see
that the constraint X - ¢ = 0 is equivalent to f,p# =0, i.e., 7,p# = = 0, which is nothing but the Dirac
equation for massless fermions. O

-3
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Problem 4 Derive the fermionic part of the Ramond-Neveu-Schwarz action

i
Sp =+ [ Rolp-d.y-+pidys) (16)
Solution. Recall that the Dirac matrices are of the form
o_ (0 -1 1 (01
We have that
0 —20_
0y = . 18

The Dirac conjugate of the spinor ¥ is ¢ = ¢'ip?. Thus we have

N (0 -1 0 20\ /[ ¢
lppalep—(lp— ¢+)1<1 0 ><28+ 0 ><¢+>

=—2i(Yp- 0y +¢i0-9y) (19)
Substituting it into the action f% [ d?0Pp* 9,1, we have
i
Sp =~ [ doly-a.y+yro_yy) (20)
O

Problem 5 Prove the following equalities

P19 = Yoy, (21)
P10 = — o1, (22)
Prp P = PopPp™ 1. (23)

Solution. These are just some straightforward calculation.

Pripn = i o = ip1appyos = —iohaP1ay2s = PR aP2BYP1A = P21 (24)

Note that here we have used the antisymmetric property of p° and the the anti-commutation relation of
Grassmann numbers.
For the second one, notice that p'* = ip’p* is symmetric for « = 0, 1. We have

Pr0" P2 = P1ap 4pt2s = ' 5a(—P28YP14) = —P2p" 1. (25)

For the last one, recall the anti-commuting relation of Grassmann numbers. To prove the equality, we
only need to shown that (ip%0%pf)T = —i(p°0Pp%). Since

1 0 ~1 0 1 0 10
POP0=< 0 _1>,p°p1=< 0 1>,plpo=<0 _1>,plpl=<0 1)- (26)

Substituting these expression into both sides of (ip’p%pf)T = —i(p%pPp%), it is easily checked. Now we
have

14 (i0°0%0P) aptpas = — (i0°0"0P) apatpra = —i(0°0P0* ) pa(—PapY14) = P20P 0"t (27)
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Problem 6 Prove the following two-dimensional Fierz transformation

_ 1.
040p = _§5ABGC9C (28)

Solution.
To prove this, let us first introduce two-dimensional anti-symmetric tensor

eAB—<_°1 é) eCD—<(1’ 01>. (29)

We will use the subscripts and superscripts notations for clarity, by definition, we have 8% = —ieBE@r, the
equality what we want to prove now becomes

0,08 = —%(559‘390 (30)
Recall that for rank-2 anti-symmetric tensors we have
eape P = (0505 — 0505, (31)
which together with e£4e 5 = 6% imply that
ope P = e"Cop — P og. (32)

Now consider the RHS of Eq. (30), and using Eq. (32), we have

%55(—1)6(3’39[)9(; = Z%(GBC(SQ — eBP5S)0p0C
1, 5. 1, 58
729A9 + 29A9
=0,0° (33)
Note that we have used 6c0p = —60p6c in the second step above.
Problem 7 Prove the following equality
{Da,Qp} =0 (34)
Solution.
Recall that
d
DA = agﬁ + (p“G)Aa,X (35)
d
Qs = 555 — (0"6) 50 (36)
We have
d 0 d " " d " "
{Da,Qp} = {aaﬁrﬁ} - {W’ (o G)Batx} +{(o Q)Aa“’ Mﬁ} —{(p 9)A 9, (0 9)3 Ja}
0 0
:0—{80ﬁ, (pue)Bag(}‘i‘{(Plxe)Aaa,ﬁ}—o (37)

here, the first and the last term vanishes just because that {04,095} = 0 and {64,605} = 0 for Grassmann
numbers. Now let’s consider the remaining two terms. Recall that dga 0p = 545 and O = ip((): Dép, we have

0 0 d . ~
{W' (0%0) 5 0u} = {a(TA’p%CGCa“} = {E,(TA/P%CZP((]:DQDE’IX}

) Jd -
= phciogp{ Py 0p }9a (38)

Problem 7 continued on next page. .. -5-
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d .0 A d
{(Pae)A da, aaﬁ} = {p%Elp%FQFaW ﬁ}
) ~ 0
= p%eip2r{0r, ﬁ}ak (39)

With these results and the anti-commutator for dga, 0, we arrive at the result that {D 4, Qp} = 0. O
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