Problem 1 Prove that

$$
\begin{equation*}
\bar{D} Y^{\mu}=\bar{\psi}^{\mu}+\bar{\theta} B^{\mu}-\bar{\theta} \rho^{\alpha} \partial_{\alpha} X^{\mu}+\frac{1}{2} \bar{\theta} \theta \partial_{\alpha} \bar{\psi}^{\mu} \rho^{\alpha} \tag{1}
\end{equation*}
$$

Solution.
Recall that $\bar{D}_{A}=-\frac{\partial}{\partial \theta^{A}}-\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha}$ and $Y^{\mu}\left(\sigma^{\alpha}, \theta_{A}\right)=X^{\mu}\left(\sigma^{\alpha}\right)+\bar{\theta} \psi^{\mu}\left(\sigma^{\alpha}\right)+\frac{1}{2} \bar{\theta} \theta B^{\mu}\left(\sigma^{\alpha}\right)$, we have

$$
\begin{align*}
\bar{D}^{A} Y^{\mu} & =\left(-\frac{\partial}{\partial \theta_{A}}-\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha}\right) Y^{\mu} \\
& =\left(-\frac{\partial}{\partial \theta_{A}} Y^{\mu}\right)+\left(-\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha} Y^{\mu}\right) \\
& =\left(0+\bar{\psi}_{A}^{\mu}+\bar{\theta}^{A} B^{\mu}\right)+\left(-\bar{\theta} \rho^{\alpha} \partial_{\alpha} X^{\mu}-\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha} \bar{\theta} \psi^{\mu}\left(\sigma^{\alpha}\right)+0\right) \tag{2}
\end{align*}
$$

We have used the fact that, for two-dimensional Grassman algebra, product of three or more Grassman number must vanish. Let us now consider the term $\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha} \bar{\theta} \psi^{\mu}\left(\sigma^{\alpha}\right)$.

$$
\begin{align*}
\left(\bar{\theta} \rho^{\alpha}\right)^{A} \partial_{\alpha} \bar{\theta} \psi^{\mu}\left(\sigma^{\alpha}\right) & =\theta_{C}\left(i \rho_{0}\right)_{C D} \rho_{D A}^{\alpha} \bar{\theta}_{E} \partial_{\alpha} \psi_{E}^{\mu} \\
& =\left(i \rho_{0}\right)_{C D} \rho_{D A}^{\alpha}\left(-\frac{1}{2} \delta_{C E} \bar{\theta}_{F} \theta_{F}\right) \partial_{\alpha} \psi_{E}^{\mu} \\
& =-\frac{1}{2} \bar{\theta} \theta \partial_{\alpha} \bar{\psi}^{\mu} \rho^{\alpha} \tag{3}
\end{align*}
$$

Substitute this into the original equation, we obtain

$$
\begin{equation*}
\bar{D} Y^{\mu}=\bar{\psi}^{\mu}+\bar{\theta} B^{\mu}-\bar{\theta} \rho^{\alpha} \partial_{\alpha} X^{\mu}+\frac{1}{2} \bar{\theta} \theta \partial_{\alpha} \bar{\psi}^{\mu} \rho^{\alpha} \tag{4}
\end{equation*}
$$

Problem 2 Derive the mass formulas for states in the R and NS sector of the RNS open superstring.

## Solution.

Let us first consider R sector, the zero mode Virasoro constraint for $a_{R}=0$ is

$$
L_{0}-0=0
$$

where the Virasoro operator is given by

$$
\begin{equation*}
L_{0}=\frac{1}{2} \alpha_{0}^{2}+N \tag{5}
\end{equation*}
$$

where number operator is

$$
\begin{equation*}
N=\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}+\sum_{n>0} n d_{-n}^{i} d_{n}^{i} \tag{6}
\end{equation*}
$$

Therefore the mass formula is

$$
\begin{equation*}
\alpha^{\prime} M^{2}=\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}+\sum_{n>0} n d_{-n}^{i} d_{n}^{i} \tag{7}
\end{equation*}
$$

Let us now consider the NS sector, zero-mode Virasoro constraint with $a_{N S}=\frac{1}{2}$ is

$$
\begin{equation*}
L_{0}-\frac{1}{2}=0 \tag{8}
\end{equation*}
$$

where Virasoro operator $L_{0}$ is given by

$$
\begin{equation*}
L_{0}=\frac{1}{2} \alpha_{0}^{2}+N \tag{9}
\end{equation*}
$$

with number operator

$$
\begin{equation*}
N=\sum_{n>0} \alpha_{-n}^{i} \alpha_{n}^{i}+\sum_{r>0} r b_{-r}^{i} b_{r}^{i} \tag{10}
\end{equation*}
$$

Therefore we get mass formula

$$
\begin{equation*}
\alpha^{\prime} M^{2}=N-\frac{1}{2} \tag{11}
\end{equation*}
$$

Problem 3 Prove that for R sector

$$
\begin{align*}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{D}{8} m^{3} \delta_{m,-n}} \\
& {\left[L_{m}, F_{n}\right]=\left(\frac{m}{2}-n\right) F_{m+n}}  \tag{12}\\
& \left\{F_{m}, F_{n}\right\}=2 L_{m+n}+\frac{D}{2} m^{2} \delta_{m,-n}
\end{align*}
$$

Prove that for NS sector

$$
\begin{align*}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{D}{8} m\left(m^{2}-1\right) \delta_{m,-n}} \\
& {\left[L_{m}, G_{r}\right]=\left(\frac{m}{2}-r\right) G_{m+r}}  \tag{13}\\
& \left\{G_{r}, G_{s}\right\}=2 L_{r+s}+\frac{D}{2}\left(r^{2}-\frac{1}{4}\right) \delta_{r,-s}
\end{align*}
$$

Solution. For R sector, recall that $L_{m}=L_{m}^{f}+L_{m}^{b}$, the bosonic part obey the usual Virasoro commutation relations,

$$
\begin{equation*}
\left[L_{m}^{b}, L_{m}^{b}\right]=(m-n) L_{m+n}=\frac{D}{12}\left(m^{3}-m\right) \delta_{m+n, 0} \tag{14}
\end{equation*}
$$

Let us calculate the fermionic part.

$$
\begin{equation*}
L_{m}^{f}=\frac{1}{2}\left(\sum_{k \geq-m / 2}\left(k+\frac{m}{2}\right) d_{-k} d_{m+k}+\sum_{k<-m / 2}\left(k+\frac{m}{2}\right) d_{m+k} d_{-k}\right) \tag{15}
\end{equation*}
$$

From which we have

$$
\begin{align*}
{\left[L_{m}^{f}, L_{n}^{f}\right]=} & \frac{1}{4}\left(\sum_{k \geq-m / 2}\left(k+\frac{m}{2}\right) d_{-k} d_{m+k}+\sum_{k<-m / 2}\left(k+\frac{m}{2}\right) d_{m+k} d_{-k}\right)\left(\sum_{l \geq-n / 2}\left(l+\frac{n}{2}\right) d_{-l} d_{n+l}+\sum_{l<-n / 2}\left(l+\frac{n}{2}\right) d_{n+l} d_{-l}\right) \\
& -\frac{1}{4}\left(\sum_{l \geq-n / 2}\left(l+\frac{n}{2}\right) d_{-l} d_{n+l}+\sum_{l<-n / 2}\left(l+\frac{n}{2}\right) d_{n+l} d_{-l}\right)\left(\sum_{k \geq-m / 2}\left(k+\frac{m}{2}\right) d_{-k} d_{m+k}+\sum_{k<-m / 2}\left(k+\frac{m}{2}\right) d_{m+k} d_{-k}\right) \tag{16}
\end{align*}
$$

Using the commutation relation $\left\{d_{n}^{\mu}, d_{m}^{\nu}\right\}=\eta^{\mu v} \delta_{m+n, 0}$, we obtain that

$$
\begin{equation*}
\left[L_{m}^{f}, L_{n}^{f}\right]=(m-n) L_{m+n}^{f}+\frac{D}{24} m^{3}+\frac{D}{12} m \tag{17}
\end{equation*}
$$

Since $L_{m}^{f}$ and $L_{n}^{b}$ commutes (they origin from independent freedoms of the theory), thus we have

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\left[L_{m}^{b}, L_{m}^{b}\right]+\left[L_{m}^{f}, L_{n}^{f}\right]=(m-n) L_{m+n}+\frac{D}{8} m\left(m^{2}-1\right) \delta_{m,-n} \tag{18}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
F_{m}=\frac{\sqrt{2}}{\pi} \int_{-\pi}^{\pi} d \sigma e^{i m \sigma} J_{+}=\sum_{n \in \mathbb{Z}} \alpha_{-n} \cdot d_{m+n} \tag{19}
\end{equation*}
$$

We have

$$
\begin{align*}
{\left[L_{m}, F_{n}\right] } & =\sum_{k \in \mathbb{Z}}\left[L_{m}, \alpha_{-k} d_{n+k}\right] \\
& =\sum_{k \in \mathbb{Z}}\left(\alpha_{-k}\left[L_{m}, d_{n+k}\right]+\left[L_{m}, \alpha_{-k}\right] d_{n+k}\right. \tag{20}
\end{align*}
$$

Since we have

$$
\begin{equation*}
\left[L_{m}, \alpha_{-k}^{\mu}\right]=\left[L_{m}^{b}, \alpha_{-k}^{\mu}\right]=-k \alpha_{m-k}^{\mu} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left[L_{m}, d_{n+k}^{\mu}\right]=\left[L_{m}^{f}, d_{n+k}^{\mu}\right]=\left(\frac{3 m}{2}+n+k\right) d_{m+n+k}^{\mu} \tag{22}
\end{equation*}
$$

Substituting them into the original equation, we obtain that

$$
\begin{equation*}
\left[L_{m}, F_{n}\right]=\left(\frac{m}{2}-n\right) F_{m+n} \tag{23}
\end{equation*}
$$

For the last one,

$$
\begin{align*}
\left\{F_{m}, F_{n}\right\} & =\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}}\left\{\alpha_{-k} d_{m+k}, \alpha_{-l} d_{n+l}\right\} \\
& =\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \alpha_{-k}^{\mu} d_{m+k, \mu} \alpha_{-l}^{v} d_{n+l, v}+\alpha_{-l}^{v} d_{n+l, v} \alpha_{-k}^{\mu} d_{m+k, \mu} \\
& \left.=\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \alpha_{-k}^{\mu} \alpha_{-l}^{v}\left(\eta_{\mu v} \delta_{m+k+n+l, 0}-d_{n+l, v} d_{m+k, \mu}\right)+\alpha_{-l}^{v} \alpha_{-k}^{\mu} d_{n+l, v} d_{m+k, \mu}\right) \\
& =2 L_{m+n}+\frac{D}{2} m^{2} \delta_{m,-n} \tag{24}
\end{align*}
$$

For the NS sector, recall that

$$
L_{m}^{\mathrm{f}}=\frac{1}{2} \sum_{r \in \mathbb{Z}+1 / 2}\left(r+\frac{m}{2}\right): b_{-r} \cdot b_{m+r}: \quad m \in \mathbb{Z}
$$

For the first one, we only need to calculate the bosonic part.

$$
\begin{equation*}
L_{m}^{f}=\frac{1}{2}\left(\sum_{r \geq-m / 2}\left(r+\frac{m}{2}\right) b_{-r} b_{m+r}+\sum_{r<-m / 2}\left(r+\frac{m}{2}\right) b_{m+r} b_{-r}\right) \tag{25}
\end{equation*}
$$

From which we have

$$
\begin{align*}
{\left[L_{m}^{f}, L_{n}^{f}\right]=} & \frac{1}{4}\left(\sum_{r \geq-m / 2}\left(r+\frac{m}{2}\right) b_{-r} b_{m+r}+\sum_{r<-m / 2}\left(r+\frac{m}{2}\right) b_{m+r} b_{-r}\right)\left(\sum_{l \geq-n / 2}\left(l+\frac{n}{2}\right) b_{-l} b_{n+l}+\sum_{l<-n / 2}\left(l+\frac{n}{2}\right) b_{n+l} b_{-l}\right) \\
& -\frac{1}{4}\left(\sum_{l \geq-n / 2}\left(l+\frac{n}{2}\right) b_{-l} b_{n+l}+\sum_{l<-n / 2}\left(l+\frac{n}{2}\right) b_{n+l} b_{-l}\right)\left(\sum_{r \geq-m / 2}\left(r+\frac{m}{2}\right) b_{-r} b_{m+r}+\sum_{r<-m / 2}\left(r+\frac{m}{2}\right) b_{m+r} b_{-r}\right) \tag{26}
\end{align*}
$$

Note that $r, l \in \mathbb{Z}+1 / 2$. Using the commutation relation $\left\{b_{r}^{\mu}, b_{l}^{v}\right\}=\eta^{\mu \nu} \delta_{r+l, 0}$, we obtain that

$$
\begin{equation*}
\left[L_{m}^{f}, L_{n}^{f}\right]=(m-n) L_{m+n}^{f}+\frac{D}{24}\left(m^{3}-m\right) \delta_{m+n, 0} \tag{27}
\end{equation*}
$$

Since $L_{m}^{f}$ and $L_{n}^{b}$ commutes (they origin from independent freedoms of the theory), thus we have

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=\left[L_{m}^{b}, L_{m}^{b}\right]+\left[L_{m}^{f}, L_{n}^{f}\right]=(m-n) L_{m+n}+\frac{D}{8} m\left(m^{2}-1\right) \delta_{m,-n} \tag{28}
\end{equation*}
$$

For the second one, since

$$
G_{r}=\frac{\sqrt{2}}{\pi} \int_{-\pi}^{\pi} d \sigma e^{i r \sigma} J_{+}=\sum_{n \in \mathbb{Z}} \alpha_{-n} \cdot b_{r+n} \quad r \in \mathbb{Z}+\frac{1}{2}
$$

Thus we have

$$
\begin{align*}
{\left[L_{m}, G_{r}\right] } & =\sum_{k \in \mathbb{Z}}\left[L_{m}, \alpha_{-k} b_{r+k}\right]  \tag{29}\\
& =\sum_{k \in \mathbb{Z}} \alpha_{-k}\left[L_{m}, b_{r+k}\right]+\left[L_{m}, \alpha_{-k}\right] b_{r+k} \tag{30}
\end{align*}
$$

Since we have

$$
\begin{gather*}
{\left[L_{m}, \alpha_{-k}^{\mu}\right]=\left[L_{m}^{b}, \alpha_{-k}^{\mu}\right]=-k \alpha_{m-k}^{\mu}}  \tag{32}\\
{\left[L_{m}, b_{r+k}^{\mu}\right]=\left[L_{m}^{f}, b_{r+k}^{\mu}\right]=\left(\frac{3 m}{2}+r+k\right) b_{m+r+k}^{\mu}} \tag{33}
\end{gather*}
$$

Substituting them into the original equation，we obtain

$$
\begin{equation*}
\left[L_{m}, G_{r}\right]=\left(\frac{m}{2}-r\right) G_{m+r} \tag{34}
\end{equation*}
$$

For the last one，

$$
\begin{align*}
\left\{G_{r}, G_{s}\right\} & =\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}}\left\{\alpha_{-k} b_{r+k}, \alpha_{-l} b_{s+l}\right\} \\
& =\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \alpha_{-k}^{\mu} b_{r+k, \mu} \alpha_{-l}^{v} b_{s+l, v}+\alpha_{-l}^{v} d_{s+l, v} \alpha_{-k}^{\mu} b_{r+k, \mu} \\
& \left.=\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} \alpha_{-k}^{\mu} \alpha_{-l}^{v}\left(\eta_{\mu v} \delta_{r+k+s+l, 0}-d_{s+l, v} d_{r+k, \mu}\right)+\alpha_{-l}^{v} \alpha_{-k}^{\mu} d_{s+l, v} d_{r+k, \mu}\right) \\
& =2 L_{r+s}+\frac{D}{2}\left(r^{2}-\frac{1}{4}\right) \delta_{r,-s} \tag{35}
\end{align*}
$$

[^0]
[^0]:    贾治安 \｜BA17038003 \｜October 13， 2021

