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Problem 1 Prove that, for a pair of Majorana spinors, Θ1 and Θ2, the flip symmetry is given by

Θ̄1Γµ1···µn Θ2 = (−1)n(n+1)/2Θ̄2Γµ1···µn Θ1

as asserted at the end of Exercise 5.2
Solution. Recall that for Majorana representation of Dirac matrices, we have Γ†

µ = ΓT
µ , and the charge

conjugate is given by C = Γ0, for which we have CΓµ = −ΓT
µ C.

Since Γµ1···µn := Γ[µ1
Γµ2 · · · Γ µn], using the same method as in exercise 5.2, we have

CΓµ1···µn C−1 =CΓ[µ1
Γµ2 · · · Γ µn]C

−1 (1)

=CΓ[µ1
C−1CΓµ2 C−1 · · ·CΓ µn]C

−1 (2)

=(−1)nΓT
[µ1

ΓT
µ2
· · · ΓT

µn]
(3)

=(−1)nΓT
µn ···µ1

(4)

therefore
CΓµ1···µn = (−1)nΓT

µn ···µ1
C (5)

Now, since CT = −C (recall that C = Γ0) and Θ are Grassmannian, we have

Θ̄1Γµ1···µn Θ2 =Θ̄1Γ[µ1
· · · Γ µn]Θ2 (6)

=ΘT
1 CΓ[µ1

· · · Γ µn]Θ2 (7)

=−ΘT
2 ΓT

[µn
· · · ΓT

µ1]
CTΘ1 (8)

=ΘT
2 ΓT

[µn
· · · ΓT

µ1]
CΘ1 (9)

=ΘT
2 ΓT

µ1···µn CΘ1 (10)

=(−1)nΘ̄2Γµn ···µ1 Θ1 (11)

=(−1)n+ n(n−1)
2 Θ̄2Γµ1···µn Θ1 (12)

=(−1)
n(n+1)

2 Θ̄2Γµ1···µn Θ1 (13)

Problem 2 Derive the relevant Fierz transformation identities for Majorana-Weyl spinors in ten dimensions
and use them to prove that

ΓµdΘdΘ̄ΓµdΘ = 0

Solution. Since we have

ΓµdΘdΘ̄ΓµdΘ = ΓµΘ,λΘ̄,ρΓµΘ,σdσλ ∧ dσρ ∧ dσσ, (14)

where dσλ ∧ dσρ ∧ dσσ is anti-symmetric with respect to indices λ, ρ, σ), thus, it is sufficient to prove that

ΓµΘ[,λΘ̄,ρΓµΘ,σ] = 0 (15)

This is a special form the general

Γµψ[1ψ̄2Γµψ3] = 0⇔ Γ0Γµψ[1ψ̄2Γµψ3] = 0 (16)

Here we will prove it by direct calculation, recall that we have ψ̄aΓµψb = −ψ̄bΓµψa, using this, we have

Γ0Γµψ[1ψ̄2Γµψ3] ∝εabcΓ0Γµψaψ̄bΓµψc (17)

=2Γ0Γµψ1ψ̄2Γµψ3 + 2Γ0Γµψ2ψ̄3Γµψ1 + 2Γ0Γµψ3ψ̄1Γµψ2 (18)

=2
(
(Γ0Γµ)mn(Γ0Γµ)pq + (Γ0Γµ)mp(Γ0Γµ)qn + (Γ0Γµ)mq(Γ0Γµ)np

)
ψ1nψ2pψ3q (19)
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Thus we need to show that(
(Γ0Γµ)mn(Γ0Γµ)pq + (Γ0Γµ)mp(Γ0Γµ)qn + (Γ0Γµ)mq(Γ0Γµ)np

)
= 0 (20)

Notice that Γ0Γµ and Γ0Γµ are symmetric, thus left hand side of the above equation are symmetric with
respect to m, n. Let us take inner produce for arbitrary two spinors ψ1 p and ψ2q of the left hand side of the
above equation (

Γ0Γµ
)

mn
ψ̄1Γµψ2 +

(
Γ0Γµψ1

)
m

(
ψ̄2Γµ

)
n
−
(

Γ0Γµψ2

)
m

(
ψ̄1Γµ

)
n
= Amn (21)

This can be regarded as a symmetric matrix with index m, n. Recall that the basis for the matrix space is(
Γµ1 ...µk

)
mn

, where k = 0, 1, . . . , 10 in ten spacetime dimensions. We only need to show that the matrix Amn

have zero coefficients on each basis. First of all, we note that the terms with k even vanish because of the
Weyl projections. Also, the identity

Γµ1 ...µk = ±
1

(10− k)!
εµ1 ...µ10 Γµk+1 ...µ10 Γ11 (22)

and the fact that Γ11 can be dropped for Weyl spinors implies that only terms with k ≤ 5 need to be
considered and that the tensor Γµ1 ...µ5 can be decomposed into a self-dual and an anti-self-dual piece only
one of which contributes. Moreover, Γ0Γµ and Γ0Γµ1 ...µ5 are symmetric, whereas Γ0Γµ1µ2µ3 is antisymmetric.
Since Amn are symmetric, we only need to consider the k = 1 and k = 5 terms. For k = 1 case

tr
(

ΓµΓρ

)
ψ̄1Γµψ2 − ψ̄2ΓµΓρΓµψ1 + ψ̄1ΓµΓρΓµψ2

= −16ψ̄1Γρψ2 − 8ψ̄2Γρψ1 + 8ψ̄1Γρψ2 = 0
(23)

For k = 5 case
− ψ̄2ΓµΓρ1 ...ρ5 Γµψ1 + ψ̄1ΓµΓρ1 ...ρ5 Γµψ2 = 2ψ̄1ΓµΓρ1 ...ρ5 Γµψ2 (24)

However, in D dimensions,
ΓµΓρ1 ...ρk Γµ = (−1)k+1(D− 2k)Γρ1 ...ρk

Taking D = 10 and k = 5 we see the above term also equal to zero. Thus conclude that Amn = 0, this
completes the proof.

Problem 3 Verify that the action (5.41) with Ω2 given by Eq. (5.55) is invariant under supersymmetry
transformations.

Solution.
Recall that the action is

S2 =
∫

M
Ω2 =

∫
D

Ω3

where M is world-sheet manifold, which is the boundary of some manifold D. According to Stokes theorem

Ω3 = dΩ2. We know that Ω2 = c
(

Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2
)

dXµ − cΘ̄1ΓµdΘ1Θ̄2ΓµdΘ2, from which we have

Ω3/c = dΩ2/c =
(

dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2
) (

dXµ − Θ̄AΓµdΘA
)
+ (25)

+
(

dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2
) (

Θ̄1ΓµdΘ1 + Θ̄2ΓµdΘ2
)

(26)

− dΘ̄1ΓµdΘ1Θ̄2ΓµdΘ2 − Θ̄1ΓµdΘ1dΘ̄2ΓµdΘ2 (27)

=Ω̃3/c− Θ̄1ΓµdΘ1dΘ̄1ΓµdΘ1 + Θ̄2ΓµdΘ2dΘ̄2ΓµdΘ2 (28)

where
Ω̃3 = c

(
dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2

)
Πµ (29)
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Since Ω̃3 is the product os three supersymmetric one form, dΘA and Πµ = dXµ − Θ̄AΓµdΘA.
Substitution of supersymmetry transformations

δΘA = εA, δXµ = ε̄AΓµΘA (30)

we have δdΘA = 0 and

δΠµ = δdXµ − ε̄ΓµdΘA = dε̄AΓµΘA − ε̄ΓµdΘA = 0. (31)

Thus, it’s a supersymmetric 3-form. Let us consider the term

− Θ̄1ΓµdΘ1dΘ̄1ΓµdΘ1 + Θ̄2ΓµdΘ2dΘ̄2ΓµdΘ2 (32)

Recall that ΘA are Majorana-Weyl spinors, form problem 2, we see that

ΓµdΘAdΘ̄AΓµdΘA = 0 (33)

Therefore Ω3 = Ω̃3, thus, the action is supersymmetric.

Problem 4 Prove the identity{
Γµ1ν1 , Γµ2ν2

}
= −2ηµ1µ2 ην1ν2 + 2ηµ1ν2 ην1µ2 + 2Γµ1ν1µ2ν2

invoked in Exercise 5.5
Solution.
Fisrtly, if µ1 = ν1 or µ2 = ν2, both sides are equal to zero.
We now assume that µ1 6= ν1 and µ2 6= ν2.
When µ1 = µ2 = α, the left hand side becomes

(Γαν1 Γαν2 + Γαν2 Γαν1) = −Γ2
α(Γν1 Γν2 + Γν2 Γν1)− ηαα2ην1ν2 = −2ηµ1µ2 ην1ν2 (34)

When µ1 = ν2 = α, the left hand side becomes

−(Γαν1 Γαµ2 + Γαµ2 Γαν1) = Γ2
α(Γν1 Γµ2 + Γµ2 Γν1)− ηαα2ην1µ2 = 2ηµ1ν2 ην1µ2 (35)

When mu1 6= ν1 6= µ2 6= ν2, i.e., for indices are different with each other, the left hand side is

1
4
(Γµ1 Γν1 Γµ2 Γν2 − Γµ1 Γν1 Γν2 Γµ2 − Γν1 Γµ1 Γµ2 Γν2 + Γν1 Γµ1 Γν2 Γµ2) + (index 1↔ 2) (36)

For each term in the summation, we have(take the first term as an example)

Γµ1 Γν1 Γµ2 Γν2 =
1
3
(Γµ1 Γν1 Γµ2 Γν2 − Γµ1 Γµ2 Γν1 Γν2 − Γν2 Γν1 Γµ2 Γµ1) (37)

Each term in Eq. (36) can split into three terms in the similar way. The result is nothing but the 2Γµ1ν1µ2ν2

Thus, we complete the proof.

Problem 5 Verify that the action (5.62) is supersymmetric.
Solution. The action can be written as the geometric form as

S2 =
∫

M
Ω2 =

1
π

∫
M

((
Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2

)
dXµ − Θ̄1ΓµdΘ1Θ̄2ΓµdΘ2

)
, (38)

where we have assumes wedge products everywhere where differentials (1-forms) are multiplied.
Substitution of supersymmetry transformations

δΘA = εA, δXµ = ε̄AΓµΘA
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into the action, we have

πδΩ2 =d
(

ε̄1ΓµdΘ1Xµ − ε̄2ΓµdΘ2Xµ
)

(39)

+ Θ̄1ΓµdΘ1 ε̄1ΓµdΘ1 + Θ̄1ΓµdΘ1 ε̄2ΓµdΘ2 − Θ̄2ΓµdΘ2 ε̄1ΓµdΘ1 − Θ̄2ΓµdΘ2 ε̄2ΓµdΘ2 (40)

− ε̄1ΓµdΘ1Θ̄2ΓµdΘ2 − Θ̄1ΓµdΘ1 ε̄2ΓµdΘ2 (41)

=d
(

ε̄1ΓµdΘ1Xµ − ε̄2ΓµdΘ2Xµ
)

(42)

+ Θ̄1ΓµdΘ1 ε̄1ΓµdΘ1 − Θ̄2ΓµdΘ2 ε̄1ΓµdΘ1 − Θ̄2ΓµdΘ2 ε̄2ΓµdΘ2 − ε̄1ΓµdΘ1Θ̄2ΓµdΘ2 (43)

=d
(

ε̄1ΓµdΘ1Xµ − ε̄2ΓµdΘ2Xµ
)

(44)

− (ε̄1Γµ∂αΘ1Θ̄1Γµ∂βΘ1)dσαdσβ + (ε̄1Γµ∂αΘ1Θ̄2Γµ∂βΘ2)dσαdσβ (45)

+ (ε̄2Γµ∂αΘ2Θ̄2Γµ∂βΘ2)dσαdσβ − (ε̄1Γµ∂αΘ1Θ̄2Γµ∂βΘ2)dσαdσβ (46)

=d
(

ε̄1ΓµdΘ1Xµ − ε̄2ΓµdΘ2Xµ
)

(47)

− (ε̄1Γµ∂αΘ1Θ̄1Γµ∂βΘ1)dσαdσβ + (ε̄2Γµ∂αΘ2Θ̄2Γµ∂βΘ2)dσαdσβ (48)

From the expression, we see that, we only need to consider the term like

Ξ = ε̄ΓµdΘΘ̄ΓµdΘ (49)

This may be rewritten as
Ξ = (Ξ1 + Ξ2) d2σ (50)

where
Ξ1 =

2
3

(
ε̄ΓµΘ̇Θ̄ΓµΘ′ + ε̄ΓµΘ′ ˙̄ΘΓµΘ + ε̄ΓµΘΘ̄′ΓµΘ̇

)
Ξ2 =

1
3

(
ε̄ΓµΘ̇Θ̄ΓµΘ′ + ε̄ΓµΘ′ ˙̄ΘΓµΘ− 2ε̄ΓµΘΘ̄′ΓµΘ̇

)
=

1
3

∂

∂τ

(
ε̄ΓµΘΘ̄ΓµΘ′

)
− 1

3
∂

∂σ

(
ε̄ΓµΘΘ̄ΓµΘ̇

)
Notice that Ξ2 is a total derivative, and Ξ1 vanishes because it’s of the form

ε̄Γµψ[1ψ̄2Γµψ3

from the proof of Problem 2, we see it equals to zero. Thus the variation is a total derivative, thus the action
is supersymmetric.
————————————————
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