Problem 1 Prove that, for a pair of Majorana spinors, Θ_{1} and Θ_{2}, the flip symmetry is given by

$$
\bar{\Theta}_{1} \Gamma_{\mu_{1} \cdots \mu_{n}} \Theta_{2}=(-1)^{n(n+1) / 2} \bar{\Theta}_{2} \Gamma_{\mu_{1} \cdots \mu_{n}} \Theta_{1}
$$

as asserted at the end of Exercise 5.2
Solution. Recall that for Majorana representation of Dirac matrices, we have $\Gamma_{\mu}^{\dagger}=\Gamma_{\mu}^{T}$, and the charge conjugate is given by $C=\Gamma^{0}$, for which we have $C \Gamma_{\mu}=-\Gamma_{\mu}^{T} C$.

Since $\Gamma_{\mu_{1} \cdots \mu_{n}}:=\Gamma_{\left[\mu_{1}\right.} \Gamma_{\mu_{2}} \cdots \Gamma_{\left.\mu_{n}\right]}$, using the same method as in exercise 5.2 , we have

$$
\begin{align*}
C \Gamma_{\mu_{1} \cdots \mu_{n}} C^{-1} & =C \Gamma_{\left[\mu_{1}\right.} \Gamma_{\mu_{2}} \cdots \Gamma_{\left.\mu_{n}\right]} C^{-1} \tag{1}\\
& =C \Gamma_{\left[\mu_{1}\right.} C^{-1} C \Gamma_{\mu_{2}} C^{-1} \cdots C \Gamma_{\left.\mu_{n}\right]} C^{-1} \tag{2}\\
& =(-1)^{n} \Gamma_{\left[\mu_{1}\right.}^{T} \Gamma_{\mu_{2}}^{T} \cdots \Gamma_{\left.\mu_{n}\right]}^{T} \tag{3}\\
& =(-1)^{n} \Gamma_{\mu_{n} \cdots \mu_{1}}^{T} \tag{4}
\end{align*}
$$

therefore

$$
\begin{equation*}
C \Gamma_{\mu_{1} \cdots \mu_{n}}=(-1)^{n} \Gamma_{\mu_{n} \cdots \mu_{1}}^{T} C \tag{5}
\end{equation*}
$$

Now, since $C^{T}=-C$ (recall that $C=\Gamma^{0}$) and Θ are Grassmannian, we have

$$
\begin{align*}
\bar{\Theta}_{1} \Gamma_{\mu_{1} \cdots \mu_{n}} \Theta_{2} & =\bar{\Theta}_{1} \Gamma_{\left[\mu_{1}\right.} \cdots \Gamma_{\left.\mu_{n}\right]} \Theta_{2} \tag{6}\\
& =\Theta_{1}^{T} C \Gamma_{\left[\mu_{1}\right.} \cdots \Gamma_{\left.\mu_{n}\right]} \Theta_{2} \tag{7}\\
& =-\Theta_{2}^{T} \Gamma_{\left[\mu_{n}\right.}^{T} \cdots \Gamma_{\mu_{1}}^{T} C^{T} \Theta_{1} \tag{8}\\
& =\Theta_{2}^{T} \Gamma_{\left[\mu_{n}\right.}^{T} \cdots \Gamma_{\left.\mu_{1}\right]}^{T} \Theta_{1} \tag{9}\\
& =\Theta_{2}^{T} \Gamma_{\mu_{1} \cdots \mu_{n}}^{T} C \Theta_{1} \tag{10}\\
& =(-1)^{n} \bar{\Theta}_{2} \Gamma_{\mu_{n} \cdots \mu_{1}} \Theta_{1} \tag{11}\\
& =(-1)^{n+\frac{n(n-1)}{2}} \bar{\Theta}_{2} \Gamma_{\mu_{1} \cdots \mu_{n}} \Theta_{1} \tag{12}\\
& =(-1)^{\frac{n(n+1)}{2}} \bar{\Theta}_{2} \Gamma_{\mu_{1} \cdots \mu_{n}} \Theta_{1} \tag{13}
\end{align*}
$$

Problem 2 Derive the relevant Fierz transformation identities for Majorana-Weyl spinors in ten dimensions and use them to prove that

$$
\Gamma^{\mu} d \Theta d \bar{\Theta} \Gamma_{\mu} d \Theta=0
$$

Solution. Since we have

$$
\begin{equation*}
\Gamma^{\mu} d \Theta d \bar{\Theta} \Gamma_{\mu} d \Theta=\Gamma^{\mu} \Theta{ }_{, \lambda} \bar{\Theta}_{, \rho} \Gamma_{\mu} \Theta{ }_{, \sigma} d \sigma^{\lambda} \wedge d \sigma^{\rho} \wedge d \sigma^{\sigma} \tag{14}
\end{equation*}
$$

where $d \sigma^{\lambda} \wedge d \sigma^{\rho} \wedge d \sigma^{\sigma}$ is anti-symmetric with respect to indices $\left.\lambda, \rho, \sigma\right)$, thus, it is sufficient to prove that

$$
\begin{equation*}
\Gamma^{\mu} \Theta_{[, \lambda} \bar{\Theta}_{, \rho} \Gamma_{\mu} \Theta_{, \sigma]}=0 \tag{15}
\end{equation*}
$$

This is a special form the general

$$
\begin{equation*}
\Gamma^{\mu} \psi_{[1} \bar{\psi}_{2} \Gamma_{\mu} \psi_{3]}=0 \Leftrightarrow \Gamma^{0} \Gamma^{\mu} \psi_{[1} \bar{\psi}_{2} \Gamma_{\mu} \psi_{3]}=0 \tag{16}
\end{equation*}
$$

Here we will prove it by direct calculation, recall that we have $\bar{\psi}_{a} \Gamma^{\mu} \psi_{b}=-\bar{\psi}_{b} \Gamma^{\mu} \psi_{a}$, using this, we have

$$
\begin{align*}
\Gamma^{0} \Gamma^{\mu} \psi_{[1} \bar{\psi}_{2} \Gamma_{\mu} \psi_{3]} & \propto \varepsilon^{a b c} \Gamma^{0} \Gamma_{\mu} \psi_{a} \bar{\psi}_{b} \Gamma^{\mu} \psi_{c} \tag{17}\\
& =2 \Gamma^{0} \Gamma_{\mu} \psi_{1} \bar{\psi}_{2} \Gamma^{\mu} \psi_{3}+2 \Gamma^{0} \Gamma_{\mu} \psi_{2} \bar{\psi}_{3} \Gamma^{\mu} \psi_{1}+2 \Gamma^{0} \Gamma_{\mu} \psi_{3} \bar{\psi}_{1} \Gamma^{\mu} \psi_{2} \tag{18}\\
& =2\left(\left(\Gamma^{0} \Gamma_{\mu}\right)_{m n}\left(\Gamma^{0} \Gamma^{\mu}\right)_{p q}+\left(\Gamma^{0} \Gamma_{\mu}\right)_{m p}\left(\Gamma^{0} \Gamma^{\mu}\right)_{q n}+\left(\Gamma^{0} \Gamma_{\mu}\right)_{m q}\left(\Gamma^{0} \Gamma^{\mu}\right)_{n p}\right) \psi_{1 n} \psi_{2 p} \psi_{3 q} \tag{19}
\end{align*}
$$

Thus we need to show that

$$
\begin{equation*}
\left(\left(\Gamma^{0} \Gamma_{\mu}\right)_{m n}\left(\Gamma^{0} \Gamma^{\mu}\right)_{p q}+\left(\Gamma^{0} \Gamma_{\mu}\right)_{m p}\left(\Gamma^{0} \Gamma^{\mu}\right)_{q n}+\left(\Gamma^{0} \Gamma_{\mu}\right)_{m q}\left(\Gamma^{0} \Gamma^{\mu}\right)_{n p}\right)=0 \tag{20}
\end{equation*}
$$

Notice that $\Gamma^{0} \Gamma^{\mu}$ and $\Gamma^{0} \Gamma_{\mu}$ are symmetric, thus left hand side of the above equation are symmetric with respect to m, n. Let us take inner produce for arbitrary two spinors $\psi_{1} p$ and $\psi_{2} q$ of the left hand side of the above equation

$$
\begin{equation*}
\left(\Gamma^{0} \Gamma^{\mu}\right)_{m n} \bar{\psi}_{1} \Gamma_{\mu} \psi_{2}+\left(\Gamma^{0} \Gamma^{\mu} \psi_{1}\right)_{m}\left(\bar{\psi}_{2} \Gamma_{\mu}\right)_{n}-\left(\Gamma^{0} \Gamma^{\mu} \psi_{2}\right)_{m}\left(\bar{\psi}_{1} \Gamma_{\mu}\right)_{n}=A_{m n} \tag{21}
\end{equation*}
$$

This can be regarded as a symmetric matrix with index m, n. Recall that the basis for the matrix space is $\left(\Gamma_{\mu_{1} \ldots \mu_{k}}\right)_{m n^{\prime}}$, where $k=0,1, \ldots, 10$ in ten spacetime dimensions. We only need to show that the matrix $A_{m n}$ have zero coefficients on each basis. First of all, we note that the terms with k even vanish because of the Weyl projections. Also, the identity

$$
\begin{equation*}
\Gamma_{\mu_{1} \ldots u_{k}}= \pm \frac{1}{(10-k)!} \epsilon_{\mu_{1} \ldots \mu_{10}} \Gamma^{\mu_{k+1} \ldots \mu_{10}} \Gamma_{11} \tag{22}
\end{equation*}
$$

and the fact that Γ_{11} can be dropped for Weyl spinors implies that only terms with $k \leq 5$ need to be considered and that the tensor $\Gamma_{\mu_{1} \ldots \mu_{5}}$ can be decomposed into a self-dual and an anti-self-dual piece only one of which contributes. Moreover, $\Gamma^{0} \Gamma_{\mu}$ and $\Gamma^{0} \Gamma_{\mu_{1} \ldots \mu_{5}}$ are symmetric, whereas $\Gamma^{0} \Gamma_{\mu_{1} \mu_{2} \mu_{3}}$ is antisymmetric. Since $A_{m n}$ are symmetric, we only need to consider the $k=1$ and $k=5$ terms. For $k=1$ case

$$
\begin{align*}
& \operatorname{tr}\left(\Gamma^{\mu} \Gamma_{\rho}\right) \bar{\psi}_{1} \Gamma_{\mu} \psi_{2}-\bar{\psi}_{2} \Gamma_{\mu} \Gamma_{\rho} \Gamma^{\mu} \psi_{1}+\bar{\psi}_{1} \Gamma_{\mu} \Gamma_{\rho} \Gamma^{\mu} \psi_{2} \tag{23}\\
& \quad=-16 \bar{\psi}_{1} \Gamma_{\rho} \psi_{2}-8 \bar{\psi}_{2} \Gamma_{\rho} \psi_{1}+8 \bar{\psi}_{1} \Gamma_{\rho} \psi_{2}=0
\end{align*}
$$

For $k=5$ case

$$
\begin{equation*}
-\bar{\psi}_{2} \Gamma_{\mu} \Gamma_{\rho_{1} \ldots \rho_{5}} \Gamma^{\mu} \psi_{1}+\bar{\psi}_{1} \Gamma_{\mu} \Gamma_{\rho_{1} \ldots \rho_{5}} \Gamma^{\mu} \psi_{2}=2 \bar{\psi}_{1} \Gamma_{\mu} \Gamma_{\rho_{1} \ldots \rho_{5}} \Gamma^{\mu} \psi_{2} \tag{24}
\end{equation*}
$$

However, in D dimensions,

$$
\Gamma_{\mu} \Gamma_{\rho_{1} \ldots \rho_{k}} \Gamma^{\mu}=(-1)^{k+1}(D-2 k) \Gamma_{\rho_{1} \ldots \rho_{k}}
$$

Taking $D=10$ and $k=5$ we see the above term also equal to zero. Thus conclude that $A_{m n}=0$, this completes the proof.

Problem 3 Verify that the action (5.41) with Ω_{2} given by Eq. (5.55) is invariant under supersymmetry transformations.

Solution.

Recall that the action is

$$
S_{2}=\int_{M} \Omega_{2}=\int_{D} \Omega_{3}
$$

where M is world-sheet manifold, which is the boundary of some manifold D. According to Stokes theorem $\Omega_{3}=d \Omega_{2}$. We know that $\Omega_{2}=c\left(\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}\right) d X^{\mu}-c \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2}$, from which we have

$$
\begin{align*}
\Omega_{3} / c=d \Omega_{2} / c= & \left(d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}-d \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}\right)\left(d X^{\mu}-\bar{\Theta}^{A} \Gamma^{\mu} d \Theta^{A}\right)+ \tag{25}\\
& +\left(d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}-d \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}\right)\left(\bar{\Theta}^{1} \Gamma^{\mu} d \Theta^{1}+\bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2}\right) \tag{26}\\
& -d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2}-\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} d \bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2} \tag{27}\\
= & \tilde{\Omega}_{3} / c-\bar{\Theta}^{1} \Gamma^{\mu} d \Theta^{1} d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}+\bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2} d \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \tag{28}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\Omega}_{3}=c\left(d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}-d \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}\right) \Pi^{\mu} \tag{29}
\end{equation*}
$$

Since $\tilde{\Omega}_{3}$ is the product os three supersymmetric one form, $d \Theta^{A}$ and $\Pi^{\mu}=d X^{\mu}-\bar{\Theta}^{A} \Gamma^{\mu} d \Theta^{A}$.
Substitution of supersymmetry transformations

$$
\begin{equation*}
\delta \Theta^{A}=\varepsilon^{A}, \quad \delta X^{\mu}=\bar{\varepsilon}^{A} \Gamma^{\mu} \Theta^{A} \tag{30}
\end{equation*}
$$

we have $\delta d \Theta^{A}=0$ and

$$
\begin{equation*}
\delta \Pi^{\mu}=\delta d X^{\mu}-\bar{\varepsilon} \Gamma^{\mu} d \Theta^{A}=d \bar{\varepsilon}^{A} \Gamma^{\mu} \Theta^{A}-\bar{\varepsilon} \Gamma^{\mu} d \Theta^{A}=0 \tag{31}
\end{equation*}
$$

Thus, it's a supersymmetric 3-form. Let us consider the term

$$
\begin{equation*}
-\bar{\Theta}^{1} \Gamma^{\mu} d \Theta^{1} d \bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}+\bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2} d \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \tag{32}
\end{equation*}
$$

Recall that Θ^{A} are Majorana-Weyl spinors, form problem 2, we see that

$$
\begin{equation*}
\Gamma^{\mu} d \Theta^{A} d \bar{\Theta}^{A} \Gamma_{\mu} d \Theta^{A}=0 \tag{33}
\end{equation*}
$$

Therefore $\Omega_{3}=\tilde{\Omega}_{3}$, thus, the action is supersymmetric.

Problem 4 Prove the identity

$$
\left\{\Gamma_{\mu_{1} v_{1}}, \Gamma_{\mu_{2} v_{2}}\right\}=-2 \eta_{\mu_{1} \mu_{2}} \eta_{v_{1} v_{2}}+2 \eta_{\mu_{1} v_{2}} \eta_{v_{1} \mu_{2}}+2 \Gamma_{\mu_{1} v_{1} \mu_{2} v_{2}}
$$

invoked in Exercise 5.5

Solution.

Fisrtly, if $\mu_{1}=v_{1}$ or $\mu_{2}=v_{2}$, both sides are equal to zero.
We now assume that $\mu_{1} \neq v_{1}$ and $\mu_{2} \neq v_{2}$.
When $\mu_{1}=\mu_{2}=\alpha$, the left hand side becomes

$$
\begin{equation*}
\left(\Gamma_{\alpha v_{1}} \Gamma_{\alpha v_{2}}+\Gamma_{\alpha v_{2}} \Gamma_{\alpha v_{1}}\right)=-\Gamma_{\alpha}^{2}\left(\Gamma_{v_{1}} \Gamma_{v_{2}}+\Gamma_{v_{2}} \Gamma_{v_{1}}\right)-\eta_{\alpha \alpha} 2 \eta_{v_{1} v_{2}}=-2 \eta_{\mu_{1} \mu_{2}} \eta_{v_{1} v_{2}} \tag{34}
\end{equation*}
$$

When $\mu_{1}=v_{2}=\alpha$, the left hand side becomes

$$
\begin{equation*}
-\left(\Gamma_{\alpha v_{1}} \Gamma_{\alpha \mu_{2}}+\Gamma_{\alpha \mu_{2}} \Gamma_{\alpha \nu_{1}}\right)=\Gamma_{\alpha}^{2}\left(\Gamma_{v_{1}} \Gamma_{\mu_{2}}+\Gamma_{\mu_{2}} \Gamma_{\nu_{1}}\right)-\eta_{\alpha \alpha} 2 \eta_{\nu_{1} \mu_{2}}=2 \eta_{\mu_{1} v_{2}} \eta_{\nu_{1} \mu_{2}} \tag{35}
\end{equation*}
$$

When $m u_{1} \neq v_{1} \neq \mu_{2} \neq v_{2}$, i.e., for indices are different with each other, the left hand side is

$$
\begin{equation*}
\frac{1}{4}\left(\Gamma_{\mu_{1}} \Gamma_{v_{1}} \Gamma_{\mu_{2}} \Gamma_{v_{2}}-\Gamma_{\mu_{1}} \Gamma_{v_{1}} \Gamma_{v_{2}} \Gamma_{\mu_{2}}-\Gamma_{v_{1}} \Gamma_{\mu_{1}} \Gamma_{\mu_{2}} \Gamma_{v_{2}}+\Gamma_{\nu_{1}} \Gamma_{\mu_{1}} \Gamma_{v_{2}} \Gamma_{\mu_{2}}\right)+(\text { index } 1 \leftrightarrow 2) \tag{36}
\end{equation*}
$$

For each term in the summation, we have(take the first term as an example)

$$
\begin{equation*}
\Gamma_{\mu_{1}} \Gamma_{v_{1}} \Gamma_{\mu_{2}} \Gamma_{v_{2}}=\frac{1}{3}\left(\Gamma_{\mu_{1}} \Gamma_{v_{1}} \Gamma_{\mu_{2}} \Gamma_{v_{2}}-\Gamma_{\mu_{1}} \Gamma_{\mu_{2}} \Gamma_{v_{1}} \Gamma_{v_{2}}-\Gamma_{v_{2}} \Gamma_{v_{1}} \Gamma_{\mu_{2}} \Gamma_{\mu_{1}}\right) \tag{37}
\end{equation*}
$$

Each term in Eq. 36 can split into three terms in the similar way. The result is nothing but the $2 \Gamma_{\mu_{1} v_{1} \mu_{2} v_{2}}$ Thus, we complete the proof.

Problem 5 Verify that the action (5.62) is supersymmetric.
Solution. The action can be written as the geometric form as

$$
\begin{equation*}
S_{2}=\int_{M} \Omega_{2}=\frac{1}{\pi} \int_{M}\left(\left(\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}\right) d X^{\mu}-\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\Theta}^{2} \Gamma^{\mu} d \Theta^{2}\right) \tag{38}
\end{equation*}
$$

where we have assumes wedge products everywhere where differentials (1-forms) are multiplied.
Substitution of supersymmetry transformations

$$
\delta \Theta^{A}=\varepsilon^{A}, \quad \delta X^{\mu}=\bar{\varepsilon}^{A} \Gamma^{\mu} \Theta^{A}
$$

into the action，we have

$$
\begin{align*}
\pi \delta \Omega_{2}= & d\left(\bar{\varepsilon}^{1} \Gamma_{\mu} d \Theta^{1} X^{\mu}-\bar{\varepsilon}^{2} \Gamma_{\mu} d \Theta^{2} X^{\mu}\right) \tag{39}\\
& +\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1}+\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\varepsilon}^{2} \Gamma^{\mu} d \Theta^{2}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \bar{\varepsilon}^{2} \Gamma^{\mu} d \Theta^{2} \tag{40}\\
& -\bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1} \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2}-\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\varepsilon}^{2} \Gamma^{\mu} d \Theta^{2} \tag{41}\\
= & d\left(\bar{\varepsilon}^{1} \Gamma_{\mu} d \Theta^{1} X^{\mu}-\bar{\varepsilon}^{2} \Gamma_{\mu} d \Theta^{2} X^{\mu}\right) \tag{42}\\
& +\bar{\Theta}^{1} \Gamma_{\mu} d \Theta^{1} \bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1}-\bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \bar{\varepsilon}^{2} \Gamma^{\mu} d \Theta^{2}-\bar{\varepsilon}^{1} \Gamma^{\mu} d \Theta^{1} \bar{\Theta}^{2} \Gamma_{\mu} d \Theta^{2} \tag{43}\\
= & d\left(\bar{\varepsilon}^{1} \Gamma_{\mu} d \Theta^{1} X^{\mu}-\bar{\varepsilon}^{2} \Gamma_{\mu} d \Theta^{2} X^{\mu}\right) \tag{44}\\
& -\left(\bar{\varepsilon}^{1} \Gamma^{\mu} \partial_{\alpha} \Theta^{1} \bar{\Theta}^{1} \Gamma_{\mu} \partial_{\beta} \Theta^{1}\right) d \sigma^{\alpha} d \sigma^{\beta}+\left(\bar{\varepsilon}^{1} \Gamma^{\mu} \partial_{\alpha} \Theta^{1} \bar{\Theta}^{2} \Gamma_{\mu} \partial_{\beta} \Theta^{2}\right) d \sigma^{\alpha} d \sigma^{\beta} \tag{45}\\
& +\left(\bar{\varepsilon}^{2} \Gamma^{\mu} \partial_{\alpha} \Theta^{2} \bar{\Theta}^{2} \Gamma_{\mu} \partial_{\beta} \Theta^{2}\right) d \sigma^{\alpha} d \sigma^{\beta}-\left(\bar{\varepsilon}^{1} \Gamma^{\mu} \partial_{\alpha} \Theta^{1} \bar{\Theta}^{2} \Gamma_{\mu} \partial_{\beta} \Theta^{2}\right) d \sigma^{\alpha} d \sigma^{\beta} \tag{46}\\
= & d\left(\bar{\varepsilon}^{1} \Gamma_{\mu} d \Theta^{1} X^{\mu}-\bar{\varepsilon}^{2} \Gamma_{\mu} d \Theta^{2} X^{\mu}\right) \tag{47}\\
& -\left(\bar{\varepsilon}^{1} \Gamma^{\mu} \partial_{\alpha} \Theta^{1} \bar{\Theta}^{1} \Gamma_{\mu} \partial_{\beta} \Theta^{1}\right) d \sigma^{\alpha} d \sigma^{\beta}+\left(\bar{\varepsilon}^{2} \Gamma^{\mu} \partial_{\alpha} \Theta^{2} \bar{\Theta}^{2} \Gamma_{\mu} \partial_{\beta} \Theta^{2}\right) d \sigma^{\alpha} d \sigma^{\beta} \tag{48}
\end{align*}
$$

From the expression，we see that，we only need to consider the term like

$$
\begin{equation*}
\Xi=\bar{\varepsilon} \Gamma^{\mu} d \Theta \bar{\Theta} \Gamma_{\mu} d \Theta \tag{49}
\end{equation*}
$$

This may be rewritten as

$$
\begin{equation*}
\Xi=\left(\Xi_{1}+\Xi_{2}\right) d^{2} \sigma \tag{50}
\end{equation*}
$$

where

$$
\begin{aligned}
\Xi_{1} & =\frac{2}{3}\left(\bar{\varepsilon} \Gamma^{\mu} \dot{\Theta} \bar{\Theta} \Gamma_{\mu} \Theta^{\prime}+\bar{\varepsilon} \Gamma^{\mu} \Theta^{\prime} \dot{\Theta} \Gamma_{\mu} \Theta+\bar{\varepsilon} \Gamma^{\mu} \Theta \bar{\Theta}^{\prime} \Gamma_{\mu} \dot{\Theta}\right) \\
\Xi_{2} & =\frac{1}{3}\left(\bar{\varepsilon} \Gamma^{\mu} \dot{\Theta} \bar{\Theta} \Gamma_{\mu} \Theta^{\prime}+\bar{\varepsilon} \Gamma^{\mu} \Theta^{\prime} \dot{\Theta} \Gamma_{\mu} \Theta-2 \bar{\varepsilon} \Gamma^{\mu} \Theta \bar{\Theta}^{\prime} \Gamma_{\mu} \dot{\Theta}\right) \\
& =\frac{1}{3} \frac{\partial}{\partial \tau}\left(\bar{\varepsilon} \Gamma^{\mu} \Theta \bar{\Theta} \Gamma_{\mu} \Theta^{\prime}\right)-\frac{1}{3} \frac{\partial}{\partial \sigma}\left(\bar{\varepsilon} \Gamma^{\mu} \Theta \bar{\Theta} \Gamma_{\mu} \dot{\Theta}\right)
\end{aligned}
$$

Notice that Ξ_{2} is a total derivative，and Ξ_{1} vanishes because it＇s of the form

$$
\bar{\varepsilon} \Gamma_{\mu} \psi_{[1} \bar{\psi}_{2} \Gamma^{\mu} \psi_{3}
$$

from the proof of Problem 2，we see it equals to zero．Thus the variation is a total derivative，thus the action is supersymmetric．

[^0]
[^0]: 贾治安 \｜BA17038003 \｜October 13， 2021

