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Topologically ordered phases
Anyon model: physical perspective

Anyon model:

Topological charges;

Fusion/splitting rule;

Mutual statistics;

Topological spin.

Entanglement pattern!

Physics of topologically ordered phase (TOP):

Topological order (compared with local
order), phase transition beyond the
Ginzburg–Landau spontaneous symmetry
breaking (SSB) theory.

Topologically protected ground state
degeneracy;

Topological entanglement entropy;

Fractional charges/statistics;

Boundary physics (edge states) and
boundary-bulk duality;

No TOP in 1d! Rich in 2d ; higher
dimensional case (not fully understood!).



Topologically ordered phases
Anyon model: physical perspective

Symmetry enriched topological (SET) phase and symmetry
protected topological (SPT) phase.

No TO TO

No Sym Trivial TO
Sym SPT SET

SET are richer and need a more complicated mathematical
characterization

SPT: Haldane chain, topological insulator.

SET: FQHE.

Exist even in 1d .

Lattice models are hard to construct.



Topologically ordered phases
Anyon model: mathematical perspective

The mathematical theory of anyons (2d)

Topological order (TO) is characterized by a unitary modular
tensor category (UMTC).

SPT and SET are characterized by (i) modular extension of
UMTC or (ii) G-crossed modular tensor category.

Anyon condensation theory.

Boundary-bulk duality.

Some notions: gapped/gapless, chiral/non-chiral,
anomalous/anomaly-free.

Our main focus of this talk is the gapped anomaly-free

non-chiral topological order (without symmetry)!



Lattice model of 2d topological order
Big picture

A rigorous definition of topological
order at the Hamiltonian level?

Gapless case: far from reaching!

Gapped case: adiabatic path H(λ)
without closing the energy gap,
H(0) ≃ H(1).

Definition of gap.

Hamiltonian theory of topological phase

Topologically ordered state: Long-range entangled states.

Topological order: a class of (local) gapped Hamiltonians
(H,H) which realize a TQFT.



Lattice model of 2d topological order
Big picture

Relation between Kitaev quantum double model and Levin-Wen
string-net model :

String-net (SN) model

Quantum double (QD) model

SN with input UFC ⇔ QD with input a connected WHA.

Multifusion SN ⇔ QD with input a general WHA.

Morita equivalence.

Duality between different models. (LU equivalence!)

EM duality.



Lattice model of 2d topological order
Weak Hopf quantum double model

Weak bialgebra (WBA)

In a braided fusion category C, a WBA is an object W ∈ C that
equipped with the following structure (i) Algebra (W , µ, η) (ii)
Coalgebra (W , µ, ε), such that

= , = = ,

= = .



Lattice model of 2d topological order
Weak Hopf quantum double model

Weak Hopf algebra (WHA)

A WHA in C is a WBA equipped with an antipode S : W → W
such that

S = , S = , S = S S .

Take C = VectC, we obtain the complex WHA.

εL(h) = (ε⊗ id)(∆(1W )(h ⊗ 1W )) =
∑

(1W ) ε(1
(1)
W

h)1
(2)
W

and we denote WL = εL(W );

εR (h) = (id⊗ε)((1W ⊗ h)∆(1W )) =
∑

(1W ) 1
(1)
W
ε(h1

(2)
W

) and we denote WR = εR (W ).



Lattice model of 2d topological order
Weak Hopf quantum double model

The linear span J of the elements

φ⊗ xh − φ(x ⇀ ε) ⊗ h, x ∈ WL,

φ⊗ yh − φ(ε ↼ y) ⊗ h, y ∈ WR ,

is a two-sided ideal of Ŵ cop ⊗ W . We denote the quotient algebra (Ŵ cop ⊗ W )/J as D(W ) and

equivalent classes in D(W ) as [φ⊗ h] for φ⊗ h ∈ Ŵ cop ⊗ W .

J is used to ensure the operations below are well-defined and satisfy the axioms of WHA.

Quantum double of WHA

For a WHA W ∈ VectC, its quantum double is defined as the space D(W ) = (Ŵ ⊗ W )/J equipped with the
following weak Hopf algebra structure:

(1) The multiplication [φ⊗ h][ψ ⊗ g ] =
∑

(ψ),(h)[φψ
(2) ⊗ h(2)g ]⟨ψ(1), S−1(h(3))⟩⟨ψ(3), h(1)⟩.

(2) The unit [ε⊗ 1W ].

(3) The comultiplication ∆([φ⊗ h]) =
∑

(φ),(h)[φ
(2) ⊗ h(1)] ⊗ [φ(1) ⊗ h(2)].

(4) The counit ε([φ⊗ h]) = ⟨φ, εR (S−1(h))⟩.

(5) The antipode S([φ⊗ h]) =
∑

(φ),(h)[Ŝ
−1(φ(2)) ⊗ S(h(2))]⟨φ(1), h(3)⟩⟨φ(3), S−1(h(1))⟩.

The quantum double has a canonical quasitriangular structure, ensuring that the representation category of D(W )
is braided.



Lattice model of 2d topological order
Weak Hopf quantum double model

Quantum double model is defined for finite group G :

Haar integral

A left (resp. right) integral of W
is an element l (resp. r) satisfying
xl = εL(x)l (resp. rx = rεR (x)).
A left (resp. right) integral l
(resp. r) is called left (resp. right)
normalized if εL(l) = 1W
(resp. εR (r) = 1W ). If h is both
a left and right integral, it is
called a two-side integral. A Haar
integral in W (or Haar measure

on Ŵ ) is a two-side normalized
two-side integral.

For weak Hopf quantum double model D(W ):

W -action: L
g
+|z⟩ = |gz⟩, Lg−|z⟩ = |zS−1(g)⟩.

ŵ -action:
T
φ
+ |x⟩ = |φ ⇀ x⟩ = |

∑
(x)⟨φ, x

(2)⟩x(1)⟩,
T
φ
−|x⟩ = |x ↼ Ŝ(φ)⟩ =

|
∑

(x)⟨Ŝ(φ), x
(1)⟩x(2)⟩.

Vertex operator Ah
v = Lh

(1)
⊗ · · · ⊗ Lh

(n)
.

Face operator B
φ
f

= Tφ
(1)

⊗ · · · ⊗ Tφ
(n)

.

Haar integral h ∈ W and φ ∈ Ŵ .



Lattice model of 2d topological order
Weak Hopf quantum double model

The bulk topological phase is characterized by the UMTC
Rep(D(W )).

W is bulk gauge symmetry, D(W ) is bulk charge symmetry.

Ribbon operators create topological excitations.

Boundary gauge symmetry is W -comodule algebra, boundary
charge symmetry is a WHA.

The boundary phase is a UFC B, the boundary-bulk duality is
given by Rep(D(W )) ≃ Z(B).

Connection with string-net model?



Lattice model of 2d topological order
Multifusion string-net model

String-net

A connected oriented trivalent lattice Σ is called a string-net. For
a string-net model with an input UMFC D, its topological
excitation is given by UMTC Z(D).

Vertex space Hv : (gauge choice Y ab
c = (dadb/dc )

1/2)

(Y ab
c )−1/2

a b

c

α = |c → a, b;α⟩,

(Y ab
c )−1/2

b

c

a

β = ⟨a, b → c; β|.

Total space Htot = ⊗vHv .

String-net (SN) model



Lattice model of 2d topological order
Multifusion string-net model: Topological local move

• loop move: b

c ′

c

a

β

α
= δc,c ′δα,βY

ab
c

c

.

• parallel move:

a b

=
∑
c,α

1

Y ab
c

ba

α

α
c

ba

.



Lattice model of 2d topological order
Multifusion string-net model: Topological local move

• F-move

Topological local move

The loop move, parallel move, and F-move, collectively known as
topological local moves, are equivalent to the Pachner moves.



Lattice model of 2d topological order
Multifusion string-net model

Input data of multifusion string-net

The input data for the generalized multifusion string-net are:

1 String type: Irr(D);

2 Fusion rule: Nc
a,b (Recall that quantum dimensions da’s are

determined by the fusion rule);

3 Local normalization factor: Y ab
c .

4 F-symbols: F ijk
l , F l

ijk .

A fully labeled string-net

bulk edge:

k

=

k∗

=

k∗∗

vacant edge :

1i

bulk vertex:

a b

c

α ,

b

c

a

β .



Lattice model of 2d topological order
Multifusion string-net model

The multifusion category D = ⊕i ,j∈IDi ,j , 1 = ⊕i∈I1i .
Xi ,j ⊗ Yj ,k ∈ Di ,k .

For weak Hopf algebra W , its representation category
Rep(W ) is a multifusion category.

String-net ground state

(a)

evaluation

(b)

Ground state |ψ⟩ =
∑

α ψ(α)|α⟩. The coefficient is calculated
by evaluation.



Lattice model of 2d topological order
Multifusion string-net model

String-net lattice model (vertex and face operators)

Qv

∣∣ a b

c

α
〉
= δc→a,b

∣∣ a b

c

α
〉
.

Bk
f

∣∣∣ j1

j2j3

j4

j5 j6

i1

i2

i3

i4

i5

i6

α1

α2
α3

α4 α5

α6

〉
=

∣∣∣ j1

j2j3

j4

j5 j6

i1

i2

i3

i4

i5

i6

α1

α2
α3

α4 α5

α6
k

〉
.



Lattice model of 2d topological order
Multifusion string-net model

String-net lattice model

The local stabilizers Qv and Bf functions are projectors and
mutually commute. Consequently, the Hamiltonian of the
generalized multifusion string-net (Jv , Jf > 0,
Bf =

∑
k∈Irr(D) wkB

k
f , wk = Y k∗k

1 /
∑

l∈Irr(D) d
2
l ):

H = −Jv
∑
v

Qv − Jf
∑
f

Bf

being a local commutative projector (LCP) Hamiltonian, exhibits a
gap in the thermodynamic limit.



Lattice model of 2d topological order
Multifusion string-net model

Multifusion string-net model

For input UMFC D, the topological excitation is given by
UMTC Z(D) (Drinfeld center).

The bulk gauge symmetry and charge symmetry are weak
Hopf algebras.

The boundary gauge symmetry is a W -comodule algebra, the
boundary charge symmetry is a weak Hopf algbra.

The domain wall gauge symmetry is a W1|W2-comodule
algebra, the domain wall charge symmetry is a weak Hopf
algebra.

Defective Levin-Wen string-net can be regarded as a
multifusion string-net!



Weak Hopf tube algebra
Bulk tube algebra

Definition (Bulk tube algebra Tube(DDD))

The bulk tube algebra Tube(DDD) is spanned by the following
basis (up to planar isotopy):

h

c

a b

d
µ

ν

e

f

g
γ

ζ

: a, · · · , h ∈ Irr(D), µ, ν, γ, ζ ∈ HomD


.

Note that the arrows have been omitted to avoid clutter in the
equation; all edges are assumed to be directed upwards.



Weak Hopf tube algebra
Bulk tube algebra: Algebra structure

excitation excitation

tube
gluing→

gluing→

• The unit is given by

1 =
∑
a,b

a

b



Weak Hopf tube algebra
Bulk tube algebra: Algebra structure

• The multiplication is of the form

h

c

a b

d
µ

ν

e

f

g

γ

ζ

·

h′

c′

a′ b′

d′

µ′

ν′

e′

f ′

g′
γ′

ζ′

= δf ,h′δe,c′

f

e

a′ b′

d′

µ′

ν′

e′

f ′

g′
γ′

ζ′

ζ

ν

a b

g

d

γ

µ

h

c



Weak Hopf tube algebra
Bulk tube algebra: Coalgebra structure

• The counit is of the form:

ε



h

c

a b

d
µ

ν

e

f

g

γ

ζ



=
δe,f δc,h

dh
ha b

d
µ

ν

f

g

γ

ζ

= δe,f δc,hδd,g δν,ζδµ,γ

√
dadf db

dh



Weak Hopf tube algebra
Bulk tube algebra: Coalgebra structure

• The comultiplication is given by

∆



h

c

a b

d
µ

ν

e

f

g

γ

ζ



=
∑

i,j,k,ρ,σ

√
dk

dadi db

h

k

a b

j

ρ

σ

i

f

g

γ

ζ

⊗

k

c

a b

d
µ

ν

e

i

j

ρ

σ



Weak Hopf tube algebra
Bulk tube algebra: Antipode morphism

• Antipode operation S :

S



h

c

a b

d
µ

ν

e

f

g
γ

ζ


=

df
dh

e

f

ā b̄

g
ζ

γ
h

c

d
ν

µ



Weak Hopf tube algebra
Bulk tube algebra: C∗ structure

• The ∗-operation is given by

h

c

a b

d
µ

ν

e

f

g
γ

ζ



∗

=
de
dc

f

e

ā b̄

d
ν

µ
c

h

g
ζ

γ



Weak Hopf tube algebra
Bulk tube algebra: weak Hopf symmetry

Weak Hopf tube algebra

For any given UMFC D, the tube algebra Tube(DDD) is a C ∗

weak Hopf algebra.

For any F ∈ FunD|D(D,D), we can construct a module VF over
the tube algebra.

VF := ⊕x ,y∈Irr(DDD)HomDDD
(F (x), y),

V F := ⊕x ,y∈Irr(DDD)HomDDD
(x ,F (y)).

F

x

y

α ∈ VF ,
F

x

y

β ∈ V F ,

Topological excitation are modules over tube algebra.

Weak Hopf tube algebra is the charge symmetry for multifusion string-net.



Weak Hopf tube algebra
Boundary tube algebra

L(DD) = span



a 1

d

ν

e

f

g

ζ

: a, · · · , g ∈ Irr(D), ν, ζ ∈ HomD



.

R(DD) = span



h

c

1 b

µ

e

f

γ

: b, · · · , h ∈ Irr(D), µ, γ,∈ HomD



.



Weak Hopf tube algebra
Boundary tube algebra

Bulk tube algebra as crossed product of boundary tube algebra:

1



h

c

1 b

d

µ

g

γ

⊗ a 1

d′

ν

e

f

g′

ζ



= δg,g′δd,d′

h

c

a b

d
µ

ν

e

f

g

γ

ζ

Boundary tube algebra

The boundary tube algebra is a weak Hopf algebra.

The boundary tube algebra can be regarded as the gauge symmetry of the bulk.



Weak Hopf tube algebra
Morita theory

General tube space Tm0,m1;n0,n1 spanned by the tube string-net configurations :

Tm0,m1;n0,n1 = span


·· ·

·
· ·

· · ·
·
·
·

n1

n0

m1

m0

: edge ∈ Irr, vertex ∈ Hom



Morita equivalence

The tube space Tm,m;n,n are algebras for all m, n ∈ N. The tube space Tm,s;n,t forms a right-Tm,m;n,n and
left-Ts,s;t,t bimodule. These structures form a Morita context in the sense that

Tm,s;n,t ⊗Tm,m;n,n Ts,m;t,n ∼= Ts,s;t,t
, Ts,m;t,n ⊗Ts,s;t,t Tm,s;n,t ∼= Tm,m;n,n

.

Thus Tm,m;n,n ’s are Morita equivalent for all m, n ∈ N.



Weak Hopf tube algebra
Summary

Weak Hopf symmetry behind 2d non-chiral topological order

There are two type of weak Hopf symmetries for non-chiral
topological phase: weak Hopf gauge symmetry and weak Hopf
charge symmetry

The weak Hopf is not unique, they are related by categorical
Morita equivalence.

For (weak Hopf) quantum double model, the weak Hopf
gauge symmetry is the input weak Hopf algebra W , the weak
Hopf charge symmetry is its quantum double D(W ).

For (multifusion) string-net model, the weak Hopf gauge
symmetry is given by boundary tube algebra, the weak Hopf
charge symmetry is given by the bulk tube algebra.



Open problems

Higher dimensional model and higher category structure.

Entanglement property, entangle entropy is sensitive to defect
and boundary.

Weak Hopf quantum double ⇔ extended string-net model.

SET/SPT generalization of quantum double model and
string-net model.

Operator algebra perspective: stability, Haag duality,
infinite-volume sector, etc.



Thank you for your aTTenTions
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